The hysteretic behavior of Wells turbines is a well-recognized phenomenon. As it appears at nondimensional frequencies orders of magnitude lower than the ones studied in rapidly pitching airfoils and wings, the cause is likely to be different. Some authors found its origin in the interaction between secondary flow structures and trailing edge vortices. In this work, a detailed numerical analysis of the performance of a Wells turbine submitted to a sinusoidal bidirectional flow is presented. Computational results are compared with experimental data available from literature and suggest a new explanation of the phenomenon.

References

1.
Wells
,
A.
,
1976
, “
Fluid Driven Rotary Transducer
,” BR Patent No. 1,595,700.
2.
de
,
O.
,
Falcao
,
A. F.
,
2010
, “
Wave Energy Utilization: A Review of the Technologies
,”
Renewable Sustainable Energy Rev.
,
14
(
3
), pp.
899
918
.
3.
Gato
,
L. M. C.
, and
de
,
O.
,
Falcao
,
A. F.
,
1988
, “
Aerodynamics of the Wells Turbine
,”
Int. J. Mech. Sci.
,
30
(
6
), pp.
383
395
.
4.
Gato
,
L. M. C.
, and
Webster
,
M.
,
2001
, “
An Experimental Investigation Into the Effect of Rotor Blade Sweep on the Performance of the Variable-Pitch Wells Turbine
,”
Proc. Inst. Mech. Eng., Part A
,
215
(
5
), pp.
611
622
.
5.
Raghunathan
,
S.
,
1995
, “
The Wells Air Turbine for Wave Energy Conversion
,”
Prog. Aerosp. Sci.
,
31
(
4
), pp.
335
386
.
6.
Curran
,
R.
, and
Gato
,
L. M. C.
,
1997
, “
The Energy Conversion Performance of Several Types of Wells Turbine Designs
,”
Proc. Inst. Mech. Eng., Part A
,
211
(
2
), pp.
133
145
.
7.
Govardhan
,
M.
, and
Dhanasekaran
,
T. S.
,
1998
, “
Effect of Guide Vanes on the Performance of a Variable Chord Self-Rectifying Air Turbine
,”
J. Therm. Sci.
,
7
(
4
), pp.
209
217
.
8.
Setoguchi
,
T.
,
Takao
,
M.
, and
Kaneko
,
K.
,
1998
, “
Hysteresis on Wells Turbine Characteristics in Reciprocating Flow
,”
Int. J. Rotating Mach.
,
4
(
1
), pp.
17
24
.
9.
Kim
,
T. H.
,
Setoguchi
,
T.
,
Takao
,
M.
,
Kaneko
,
K.
, and
Santhakumar
,
S.
,
2002
, “
Study of Turbine With Self-Pitch-Controlled Blades for Wave Energy Conversion
,”
Int. J. Therm. Sci.
,
41
(
1
), pp.
101
107
.
10.
Thakker
,
A.
, and
Abdulhadi
,
R.
,
2007
, “
Effect of Blade Profile on the Performance of Wells Turbine Under Unidirectional Sinusoidal and Real Sea Flow Conditions
,”
Int. J. Rotating Mach.
,
2007
, pp.
1
9
.
11.
Mala
,
K.
,
Jayaraj
,
J.
,
Jayashankar
,
V.
,
Muruganandam
,
T.
,
Santhakumar
,
S.
,
Ravindran
,
M.
,
Takao
,
M.
,
Setoguchi
,
T.
,
Toyota
,
K.
, and
Nagata
,
S.
,
2011
, “
A Twin Unidirectional Impulse Turbine Topology for OWC Based Wave Energy Plants—Experimental Validation and Scaling
,”
Renewable Energy
,
36
(
1
), pp.
307
314
.
12.
Paderi
,
M.
, and
Puddu
,
P.
,
2013
, “
Experimental Investigation in a Wells Turbine Under Bi-Directional Flow
,”
Renewable Energy
,
57
, pp.
570
576
.
13.
Puddu
,
P.
,
Paderi
,
M.
, and
Manca
,
C.
,
2014
, “
Aerodynamic Characterization of a Wells Turbine Under Bi-Directional Airflow
,”
Energy Procedia
,
45
, pp.
278
287
.
14.
Moisel
,
C.
, and
Carolus
,
T.
,
2016
, “
A Facility for Testing the Aerodynamic and Acoustic Performance of Bidirectional Air Turbines for Ocean Wave Energy Conversion
,”
Renewable Energy
,
86
, pp.
1340
1352
.
15.
Kim
,
T.
,
Setoguchi
,
T.
,
Kinoue
,
Y.
, and
Kaneko
,
K.
,
2001
, “
Effects of Blade Geometry on Performance of Wells Turbine for Wave Power Conversion
,”
J. Therm. Sci.
,
10
(
4
), pp.
293
300
.
16.
Kim
,
T.
,
Setoguchi
,
T.
,
Kaneko
,
K.
, and
Raghunathan
,
S.
,
2002
, “
Numerical Investigation on the Effect of Blade Sweep on the Performance of Wells Turbine
,”
Renewable Energy
,
25
(
2
), pp.
235
248
.
17.
Setoguchi
,
T.
,
Kinoue
,
Y.
,
Kim
,
T. H.
,
Kaneko
,
K.
, and
Inoue
,
M.
,
2003
, “
Hysteretic Characteristics of Wells Turbine for Wave Power Conversion
,”
Renewable Energy
,
28
(
13
), pp.
2113
2127
.
18.
Kinoue
,
Y.
,
Setoguchi
,
T.
,
Kim
,
T. H.
,
Kaneko
,
K.
, and
Inoue
,
M.
,
2003
, “
Mechanism of Hysteretic Characteristics of Wells Turbine for Wave Power Conversion
,”
ASME J. Fluids Eng.
,
125
(
2
), pp.
302
307
.
19.
Kinoue
,
Y.
,
Kim
,
T. H.
,
Setoguchi
,
T.
,
Mohammad
,
M.
,
Kaneko
,
K.
, and
Inoue
,
M.
,
2004
, “
Hysteretic Characteristics of Monoplane and Biplane Wells Turbine for Wave Power Conversion
,”
Energy Convers. Manage.
,
45
(
9–10
), pp.
1617
1629
.
20.
Dhanasekaran
,
T. S.
, and
Govardhan
,
M.
,
2005
, “
Computational Analysis of Performance and Flow Investigation on Wells Turbine for Wave Energy Conversion
,”
Renewable Energy
,
30
(
14
), pp.
2129
2147
.
21.
Torresi
,
M.
,
Camporeale
,
S. M.
, and
Pascazio
,
G.
,
2009
, “
Detailed CFD Analysis of the Steady Flow in a Wells Turbine Under Incipient and Deep Stall Conditions
,”
ASME J. Fluids Eng.
,
131
(
7
), p.
071103
.
22.
Gomes
,
R.
,
Henriques
,
J.
,
Gato
,
L.
, and
Falcão
,
A.
,
2012
, “
Hydrodynamic Optimization of an Axisymmetric Floating Oscillating Water Column for Wave Energy Conversion
,”
Renewable Energy
,
44
, pp.
328
339
.
23.
Starzmann
,
R.
, and
Carolus
,
T.
,
2013
, “
Effect of Blade Skew Strategies on the Operating Range and Aeroacoustic Performance of the Wells Turbine
,”
ASME J. Turbomach.
,
136
(
1
), p.
011003
.
24.
Soltanmohamadi
,
R.
, and
Lakzian
,
E.
,
2015
, “
Improved Design of Wells Turbine for Wave Energy Conversion Using Entropy Generation
,”
Meccanica
.
25.
Halder
,
P.
,
Samad
,
A.
,
Kim
,
J.-H.
, and
Choi
,
Y.-S.
,
2015
, “
High Performance Ocean Energy Harvesting Turbine Design—A New Casing Treatment Scheme
,”
Energy
,
86
, pp.
219
231
.
26.
Shehata
,
A.
,
Saqr
,
K.
,
Xiao
,
Q.
,
Shehadeh
,
M.
, and
Day
,
A.
,
2016
, “
Performance Analysis of Wells Turbine Blades Using the Entropy Generation Minimization Method
,”
Renewable Energy
,
86
, pp.
1123
1133
.
27.
Jumper
,
E. J.
,
Schreck
,
S. J.
, and
Dimmick
,
R. L.
,
1987
, “
Lift-Curve Characteristics for an Airfoil Pitching at Constant Rate
,”
J. Aircr.
,
24
(
10
), pp.
680
687
.
28.
Albertson
,
J.
,
Troutt
,
T.
, and
Kedzie
,
C.
,
1988
, “
Unsteady Aerodynamic Forces at Low Airfoil Pitching Rates
,”
AIAA
Paper No. 88-2579-CP.
29.
Ekaterinaris
,
J. A.
,
1995
, “
Numerical Investigation of Dynamic Stall of an Oscillating Wing
,”
AIAA J.
,
33
(
10
), pp.
1803
1808
.
30.
Barakos
,
G. N.
, and
Drikakis
,
D.
,
2003
, “
Computational Study of Unsteady Turbulent Flows Around Oscillating and Ramping Aerofoils
,”
Int. J. Numer. Methods Fluids
,
42
(2), pp.
163
186
.
31.
Wang
,
S.
,
Ingham
,
D. B.
,
Ma
,
L.
,
Pourkashanian
,
M.
, and
Tao
,
Z.
,
2010
, “
Numerical Investigations on Dynamic Stall of Low Reynolds Number Flow Around Oscillating Airfoils
,”
Comput. Fluids
,
39
(
9
), pp.
1529
1541
.
32.
Cunningham
,
A.
, Jr.
, and
den Boer
,
R.
,
1994
, “
Steady and Unsteady Aerodynamics of a Pitching Straked Wing Model at High Angles of Attack
,”
AGARD CP-535, Brussels
, Belgium, Oct. 4–7,
J.
Albertson
,
T.
Troutt
, and
C.
Kedzie
, eds.
33.
Muthukumar
,
A.
, and
Poddar
,
K.
,
2008
, “
Fluid Flow Phenomena over the Low Pitch Rate Cambered Airfoil
,” 5th
WSEAS
International Conference on Fluid Mechanics
, Acapulco, Mexico, Jan. 25–27.
34.
Ghisu
,
T.
,
Puddu
,
P.
, and
Cambuli
,
F.
,
2015
, “
Numerical Analysis of a Wells Turbine at Different Nondimensional Piston Frequencies
,”
J. Therm. Sci.
,
24
(
6
), pp.
535
543
.
35.
Tyacke
,
J. C.
, and
Tucker
,
P. G.
,
2014
, “
Future Use of Large Eddy Simulation in Aeroengines
,”
ASME J. Turbomach.
,
137
(
8
), p.
081005
.
36.
Wahba
,
E.
,
Gadalla
,
M.
,
Abueidda
,
D.
,
Dalaq
,
A.
,
Hafiz
,
H.
,
Elawadi
,
K.
, and
Issa
,
R.
,
2014
, “
On the Performance of Air-Lift Pumps: From Analytical Models to Large Eddy Simulation
,”
ASME J. Fluids Eng.
,
136
(
11
), p.
111301
.
37.
Im
,
H. S.
,
Zha
,
G. C.
, and
Dano
,
B.
,
2014
, “
Large Eddy Simulation of Coflow Jet Airfoil at High Angle of Attack
,”
ASME J. Fluids Eng.
,
136
(
2
), p.
021101
.
You do not currently have access to this content.