The hysteretic behavior of Wells turbines is a well-recognized phenomenon. As it appears at nondimensional frequencies orders of magnitude lower than the ones studied in rapidly pitching airfoils and wings, the cause is likely to be different. Some authors found its origin in the interaction between secondary flow structures and trailing edge vortices. In this work, a detailed numerical analysis of the performance of a Wells turbine submitted to a sinusoidal bidirectional flow is presented. Computational results are compared with experimental data available from literature and suggest a new explanation of the phenomenon.
Issue Section:
Flows in Complex Systems
References
1.
Wells
, A.
, 1976
, “Fluid Driven Rotary Transducer
,” BR Patent No. 1,595,700.2.
de
, O.
, Falcao
, A. F.
, 2010
, “Wave Energy Utilization: A Review of the Technologies
,” Renewable Sustainable Energy Rev.
, 14
(3
), pp. 899
–918
.3.
Gato
, L. M. C.
, and de
, O.
, Falcao
, A. F.
, 1988
, “Aerodynamics of the Wells Turbine
,” Int. J. Mech. Sci.
, 30
(6
), pp. 383
–395
.4.
Gato
, L. M. C.
, and Webster
, M.
, 2001
, “An Experimental Investigation Into the Effect of Rotor Blade Sweep on the Performance of the Variable-Pitch Wells Turbine
,” Proc. Inst. Mech. Eng., Part A
, 215
(5
), pp. 611
–622
.5.
Raghunathan
, S.
, 1995
, “The Wells Air Turbine for Wave Energy Conversion
,” Prog. Aerosp. Sci.
, 31
(4
), pp. 335
–386
.6.
Curran
, R.
, and Gato
, L. M. C.
, 1997
, “The Energy Conversion Performance of Several Types of Wells Turbine Designs
,” Proc. Inst. Mech. Eng., Part A
, 211
(2
), pp. 133
–145
.7.
Govardhan
, M.
, and Dhanasekaran
, T. S.
, 1998
, “Effect of Guide Vanes on the Performance of a Variable Chord Self-Rectifying Air Turbine
,” J. Therm. Sci.
, 7
(4
), pp. 209
–217
.8.
Setoguchi
, T.
, Takao
, M.
, and Kaneko
, K.
, 1998
, “Hysteresis on Wells Turbine Characteristics in Reciprocating Flow
,” Int. J. Rotating Mach.
, 4
(1
), pp. 17
–24
.9.
Kim
, T. H.
, Setoguchi
, T.
, Takao
, M.
, Kaneko
, K.
, and Santhakumar
, S.
, 2002
, “Study of Turbine With Self-Pitch-Controlled Blades for Wave Energy Conversion
,” Int. J. Therm. Sci.
, 41
(1
), pp. 101
–107
.10.
Thakker
, A.
, and Abdulhadi
, R.
, 2007
, “Effect of Blade Profile on the Performance of Wells Turbine Under Unidirectional Sinusoidal and Real Sea Flow Conditions
,” Int. J. Rotating Mach.
, 2007
, pp. 1
–9
.11.
Mala
, K.
, Jayaraj
, J.
, Jayashankar
, V.
, Muruganandam
, T.
, Santhakumar
, S.
, Ravindran
, M.
, Takao
, M.
, Setoguchi
, T.
, Toyota
, K.
, and Nagata
, S.
, 2011
, “A Twin Unidirectional Impulse Turbine Topology for OWC Based Wave Energy Plants—Experimental Validation and Scaling
,” Renewable Energy
, 36
(1
), pp. 307
–314
.12.
Paderi
, M.
, and Puddu
, P.
, 2013
, “Experimental Investigation in a Wells Turbine Under Bi-Directional Flow
,” Renewable Energy
, 57
, pp. 570
–576
.13.
Puddu
, P.
, Paderi
, M.
, and Manca
, C.
, 2014
, “Aerodynamic Characterization of a Wells Turbine Under Bi-Directional Airflow
,” Energy Procedia
, 45
, pp. 278
–287
.14.
Moisel
, C.
, and Carolus
, T.
, 2016
, “A Facility for Testing the Aerodynamic and Acoustic Performance of Bidirectional Air Turbines for Ocean Wave Energy Conversion
,” Renewable Energy
, 86
, pp. 1340
–1352
.15.
Kim
, T.
, Setoguchi
, T.
, Kinoue
, Y.
, and Kaneko
, K.
, 2001
, “Effects of Blade Geometry on Performance of Wells Turbine for Wave Power Conversion
,” J. Therm. Sci.
, 10
(4
), pp. 293
–300
.16.
Kim
, T.
, Setoguchi
, T.
, Kaneko
, K.
, and Raghunathan
, S.
, 2002
, “Numerical Investigation on the Effect of Blade Sweep on the Performance of Wells Turbine
,” Renewable Energy
, 25
(2
), pp. 235
–248
.17.
Setoguchi
, T.
, Kinoue
, Y.
, Kim
, T. H.
, Kaneko
, K.
, and Inoue
, M.
, 2003
, “Hysteretic Characteristics of Wells Turbine for Wave Power Conversion
,” Renewable Energy
, 28
(13
), pp. 2113
–2127
.18.
Kinoue
, Y.
, Setoguchi
, T.
, Kim
, T. H.
, Kaneko
, K.
, and Inoue
, M.
, 2003
, “Mechanism of Hysteretic Characteristics of Wells Turbine for Wave Power Conversion
,” ASME J. Fluids Eng.
, 125
(2
), pp. 302
–307
.19.
Kinoue
, Y.
, Kim
, T. H.
, Setoguchi
, T.
, Mohammad
, M.
, Kaneko
, K.
, and Inoue
, M.
, 2004
, “Hysteretic Characteristics of Monoplane and Biplane Wells Turbine for Wave Power Conversion
,” Energy Convers. Manage.
, 45
(9–10
), pp. 1617
–1629
.20.
Dhanasekaran
, T. S.
, and Govardhan
, M.
, 2005
, “Computational Analysis of Performance and Flow Investigation on Wells Turbine for Wave Energy Conversion
,” Renewable Energy
, 30
(14
), pp. 2129
–2147
.21.
Torresi
, M.
, Camporeale
, S. M.
, and Pascazio
, G.
, 2009
, “Detailed CFD Analysis of the Steady Flow in a Wells Turbine Under Incipient and Deep Stall Conditions
,” ASME J. Fluids Eng.
, 131
(7
), p. 071103
.22.
Gomes
, R.
, Henriques
, J.
, Gato
, L.
, and Falcão
, A.
, 2012
, “Hydrodynamic Optimization of an Axisymmetric Floating Oscillating Water Column for Wave Energy Conversion
,” Renewable Energy
, 44
, pp. 328
–339
.23.
Starzmann
, R.
, and Carolus
, T.
, 2013
, “Effect of Blade Skew Strategies on the Operating Range and Aeroacoustic Performance of the Wells Turbine
,” ASME J. Turbomach.
, 136
(1
), p. 011003
.24.
Soltanmohamadi
, R.
, and Lakzian
, E.
, 2015
, “Improved Design of Wells Turbine for Wave Energy Conversion Using Entropy Generation
,” Meccanica
.25.
Halder
, P.
, Samad
, A.
, Kim
, J.-H.
, and Choi
, Y.-S.
, 2015
, “High Performance Ocean Energy Harvesting Turbine Design—A New Casing Treatment Scheme
,” Energy
, 86
, pp. 219
–231
.26.
Shehata
, A.
, Saqr
, K.
, Xiao
, Q.
, Shehadeh
, M.
, and Day
, A.
, 2016
, “Performance Analysis of Wells Turbine Blades Using the Entropy Generation Minimization Method
,” Renewable Energy
, 86
, pp. 1123
–1133
.27.
Jumper
, E. J.
, Schreck
, S. J.
, and Dimmick
, R. L.
, 1987
, “Lift-Curve Characteristics for an Airfoil Pitching at Constant Rate
,” J. Aircr.
, 24
(10
), pp. 680
–687
.28.
Albertson
, J.
, Troutt
, T.
, and Kedzie
, C.
, 1988
, “Unsteady Aerodynamic Forces at Low Airfoil Pitching Rates
,” AIAA
Paper No. 88-2579-CP.29.
Ekaterinaris
, J. A.
, 1995
, “Numerical Investigation of Dynamic Stall of an Oscillating Wing
,” AIAA J.
, 33
(10
), pp. 1803
–1808
.30.
Barakos
, G. N.
, and Drikakis
, D.
, 2003
, “Computational Study of Unsteady Turbulent Flows Around Oscillating and Ramping Aerofoils
,” Int. J. Numer. Methods Fluids
, 42
(2), pp. 163
–186
.31.
Wang
, S.
, Ingham
, D. B.
, Ma
, L.
, Pourkashanian
, M.
, and Tao
, Z.
, 2010
, “Numerical Investigations on Dynamic Stall of Low Reynolds Number Flow Around Oscillating Airfoils
,” Comput. Fluids
, 39
(9
), pp. 1529
–1541
.32.
Cunningham
, A.
, Jr., and den Boer
, R.
, 1994
, “Steady and Unsteady Aerodynamics of a Pitching Straked Wing Model at High Angles of Attack
,” AGARD CP-535, Brussels
, Belgium, Oct. 4–7, J.
Albertson
, T.
Troutt
, and C.
Kedzie
, eds.33.
Muthukumar
, A.
, and Poddar
, K.
, 2008
, “Fluid Flow Phenomena over the Low Pitch Rate Cambered Airfoil
,” 5th WSEAS
International Conference on Fluid Mechanics
, Acapulco, Mexico, Jan. 25–27.34.
Ghisu
, T.
, Puddu
, P.
, and Cambuli
, F.
, 2015
, “Numerical Analysis of a Wells Turbine at Different Nondimensional Piston Frequencies
,” J. Therm. Sci.
, 24
(6
), pp. 535
–543
.35.
Tyacke
, J. C.
, and Tucker
, P. G.
, 2014
, “Future Use of Large Eddy Simulation in Aeroengines
,” ASME J. Turbomach.
, 137
(8
), p. 081005
.36.
Wahba
, E.
, Gadalla
, M.
, Abueidda
, D.
, Dalaq
, A.
, Hafiz
, H.
, Elawadi
, K.
, and Issa
, R.
, 2014
, “On the Performance of Air-Lift Pumps: From Analytical Models to Large Eddy Simulation
,” ASME J. Fluids Eng.
, 136
(11
), p. 111301
.37.
Im
, H. S.
, Zha
, G. C.
, and Dano
, B.
, 2014
, “Large Eddy Simulation of Coflow Jet Airfoil at High Angle of Attack
,” ASME J. Fluids Eng.
, 136
(2
), p. 021101
.Copyright © 2016 by ASME
You do not currently have access to this content.