Peristaltic transport of electrically conducting blood through a permeable microvessel is investigated by considering the Casson model in the presence of an external magnetic field. The reabsorption process across the permeable microvessel wall is regarded to govern by Starling's hypothesis. Under the long wavelength approximation and low-Reynolds number assumption, the nonlinear governing equations along with the boundary conditions are solved using a perturbation technique. Starling's hypothesis at the microvessel wall provides a second-order ordinary differential equation to be solved numerically for pressure distribution which in turn gives the stream function and temperature field. Also, the location of the interface between the plug and core regions is obtained from the axial velocity. Due to an increasing reabsorption process, the axial velocity is found to increase initially but decreases near the outlet. The temperature is appreciably intensified by virtue of the Joule heating produced due to the electrical conductivity of blood.

References

1.
Intaglietta
,
M.
,
1981
, “
Vasomotor Activity, Time-Dependent Fluid Exchange and Tissue Pressure
,”
Microvasc. Res.
,
21
(
2
), pp.
153
164
.
2.
Latham
,
T. W.
,
1966
, “
Fluid Motion in a Peristaltic Pump
,”
M.Sc. thesis
, Massachusetts Institute of Technology, Cambridge, MA.
3.
Burns
,
J. C.
, and
Parkes
,
T.
,
1967
, “
Peristaltic Motion
,”
J. Fluid Mech.
,
29
(
4
), pp.
731
743
.
4.
Shapiro
,
A. H.
,
Jaffrin
,
M.
, and
Weinberg
,
S. L.
,
1969
, “
Peristaltic Pumping With Long Wavelengths at Low Reynolds Number
,”
J. Fluid Mech.
,
37
(
4
), pp.
799
825
.
5.
Cokelet
,
G. R.
,
1972
,
The Rheology of Human Blood
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
6.
Bugliarello
,
G.
, and
Sevilla
,
J.
,
1970
, “
Velocity Distribution and Other Characteristics of Steady and Pulsatile Blood Flow in Fine Glass
,”
Biorheology
,
7
(
2
), pp.
85
107
.
7.
Merrill
,
F. W.
,
Benis
,
A. M.
,
Gilliland
,
E. R.
,
Sherwood
,
T. K.
, and
Salzman
,
E. W.
,
1965
, “
Pressure Flow Relations of Human Blood in Hollow Fibers at Low Flow Rates
,”
J. Appl. Physiol.
,
20
(
5
), pp.
954
967
.
8.
Raju
,
K. K.
, and
Devanathan
,
R.
,
1972
, “
Peristaltic Motion of a Non-Newtonian Fluid
,”
Rheol. Acta
,
11
(
2
), pp.
170
178
.
9.
Srivastava
,
L. M.
, and
Srivastava
,
V. P.
,
1984
, “
Peristaltic Transport of Blood: Casson Model-II
,”
J. Biomech.
,
17
(
11
), pp.
821
829
.
10.
Misra
,
J. C.
, and
Pandey
,
S. K.
,
2002
, “
Peristaltic Transport of Blood in Small Vessels: Study of a Mathematical Model
,”
Comput. Math. Appl.
,
43
(
8
), pp.
1183
1193
.
11.
Mernone
,
A. V.
,
Mazumdar
,
J. N.
, and
Lucas
,
S. K.
,
2002
, “
A Mathematical Study of Peristaltic Transport of a Casson Fluid
,”
Math. Comput. Modell.
,
35
(
7
), pp.
895
912
.
12.
Subba Reddy
,
M. V.
,
Mishra
,
M.
,
Sreenadh
,
S.
, and
Rao
,
A. R.
,
2005
, “
Influence of Lateral Walls on Peristaltic Flow in a Rectangular Duct
,”
ASME J. Fluids Eng.
,
127
(
4
), pp.
824
827
.
13.
Nagarani
,
P.
,
2010
, “
Peristaltic Transport of a Casson Fluid in an Inclined Channel
,”
Korea-Australia Rheol. J.
,
22
(
2
), pp.
105
111
.
14.
Nadeem
,
S.
,
Akram
,
S.
,
Hayat
,
T.
, and
Hendi
,
A. A.
,
2012
, “
Peristaltic Flow of a Carreau Fluid in a Rectangular Duct
,”
ASME J. Fluids Eng.
,
134
(
4
), p.
041201
.
15.
Maiti
,
S.
, and
Misra
,
J. C.
,
2013
, “
Non-Newtonian Characteristics of Peristaltic Flow of Blood in Microvessels
,”
Commun. Nonlinear Sci. Numer. Simul.
18
(
8
), pp.
1970
1988
.
16.
Hayat
,
T.
,
Abbasi
,
F. M.
,
Ahmad
,
B.
, and
Alsaedi
,
A.
,
2014
, “
Peristaltic Transport of Carreau-Yasuda Fluid in a Curved Channel With Slip Effects
,”
PLoS One
,
9
(
4
), p.
e95070
.
17.
Akbar
,
N. S.
, and
Butt
,
A. W.
,
2015
, “
Heat Transfer Analysis for the Peristaltic Flow of Herschel–Bulkley Fluid in a Nonuniform Inclined Channel
,”
Z. Naturforsch., A
,
70
(
1
), pp.
23
32
.
18.
Higashi
,
T.
,
Yamagishi
,
A.
,
Takeuchi
,
T.
,
Kawaguchi
,
N.
,
Sagawa
,
S.
,
Onishi
,
S.
, and
Date
,
M.
,
1993
, “
Orientation of Erythrocytes in a Strong Static Magnetic Field
,”
J. Blood
,
82
(
4
), pp.
1328
1334
.
19.
Tzirtzilakis
,
E. E.
,
2005
, “
A Mathematical Model for Blood Flow in Magnetic Field
,”
Phys. Fluids
,
17
(
7
), p.
077103
.
20.
Sharma
,
B. K.
,
Mishra
,
A.
, and
Gupta
,
S.
,
2013
, “
Heat and Mass Transfer in Magneto-Biofluid Flow Through a Non-Darcian Porous Medium With Joule Effect
,”
J. Eng. Phys. Thermophys.
,
86
(
4
), pp.
766
774
.
21.
Ravi Kumar
,
S.
,
2013
, “
Hydromagnetic Peristaltic Flow of Blood With Effect of Porous Medium Through Coaxial Vertical Channel: A Theoretical Study
,”
Int. J. Eng. Sci. Res. Technol.
,
2
(
10
), pp.
2863
2871
.
22.
Starling
,
E. H.
,
1896
, “
On the Absorption of Fluids From the Convective Tissue Spaces
,”
J. Physiol.
,
19
(
4
), pp.
312
326
.
23.
Weinbaum
,
S.
,
1998
, “
1997 Whitaker Distinguished Lecture: Models to Solve Mysteries in Biomechanics at the Cellular Level; A New View of Fiber Matrix Layers
,”
Ann. Biomed. Eng.
,
26
(
4
), pp.
1
17
.
24.
Oka
,
S.
, and
Murata
,
T.
,
1970
, “
A Theoretical Study of the Flow of Blood in a Capillary With Permeable Wall
,”
Jpn. J. Appl. Phys.
,
9
(
4
), pp.
345
352
.
25.
Blake
,
T. R.
, and
Gross
,
J. F.
,
1983
, “
Analysis of Transcapillary Fluid Exchange and Intraluminal Transport in the Microocclusion of Single Capillaries
,”
Microvasc. Res.
,
25
(
2
), pp.
156
175
.
26.
Mariamma
,
N. K.
, and
Majhi
,
S. N.
,
2000
, “
Flow of a Newtonian Fluid in a Blood Vessel With Permeable Wall—A Theoretical Model
,”
Comput. Math. Appl.
,
40
(
12
), pp.
1419
1432
.
27.
Elshahed
,
M.
,
2004
, “
Blood Flow in Capillary Under Starling Hypothesis
,”
Appl. Math. Comput.
,
149
(
2
), pp.
431
439
.
28.
Berhane
,
T.
,
2011
, “
Some Mathematical Models of Flow in Renal Tubules
,” Ph.D. thesis, National Institute of Technology, Warangal, India.
29.
Davison
,
P. A.
,
2001
,
An Introduction to Magnetohydrodynamics
,
Cambridge University Press
,
New York
.
30.
Fung
,
Y. C.
,
1997
,
Biomechanics - Circulation
, 2nd ed.,
Springer
,
New York
.
You do not currently have access to this content.