This paper reports an investigation of the effects of surface conditions of forward-facing steps (FFS) on turbulent flows. Three surface conditions including one smooth step and two rough step surfaces created using sandpapers were studied. A particle image velocimetry (PIV) technique was used to conduct velocity measurements at several locations downstream, and the statistics up to 60 step heights are reported. The step height was maintained at 6 mm, and three Reynolds numbers of Reh = 1600, 3200, and 4800, where Reh is based on the step height and freestream mean velocity, were studied. The results indicate that the reattachment length of a FFS increases with Reynolds number but decreases with increasing surface roughness. The proper orthogonal decomposition (POD) results showed the step roughness affects even the large-scale structures.

References

1.
Agelinchaab
,
M.
, and
Tachie
,
M. F.
,
2008
, “
PIV Study of Separated and Reattached Open Channel Flow Over Surface Mounted Blocks
,”
ASME J. Fluids Eng.
,
130
(
6
), p.
061206
.
2.
Gasset
,
N.
,
Poitras
,
G.
,
Gagnon
,
Y.
, and
Brothers
,
C.
,
2005
, “
Study of Atmospheric Boundary Layer Flows Over a Coastal Cliff
,”
Wind Eng.
,
29
(
1
), pp.
3
24
.
3.
Largeau
,
J.
, and
Moriniere
,
V.
,
2007
, “
Wall Pressure Fluctuations and Topology in Separated Flows Over a Forward Facing Step
,”
Exp. Fluids
,
42
(
1
), pp.
21
40
.
4.
Sherry
,
M.
,
Lo Jaconoa
,
D.
, and
Sheridana
,
J.
,
2010
, “
An Experimental Investigation of the Recirculation Zone Formed Downstream of a Forward Facing Step
,”
J. Wind Eng. Ind. Aerodyn.
,
98
(
12
), pp.
888
894
.
5.
Pearson
,
D. S.
,
Goulart
,
P. J.
, and
Ganapathisubramani
,
B.
,
2011
, “
Investigation of Turbulent Separation in a Forward-Facing Step Flow
,”
J. Phys.: Conf. Ser.
,
318
(
Section 2
), p.
022031
.
6.
Wu
,
Y. H.
, and
Ren
,
H. Y.
,
2013
, “
On the Impacts of Coarse-Scale Models of Realistic Roughness on a Forward-Facing Step Turbulent Flow
,”
Int. J. Heat Fluid Flow
,
40
, pp.
15
31
.
7.
Wu
,
Y. H.
, and
Ren
,
H. Y.
,
2011
, “
Turbulent Boundary Layers Over Smooth and Rough Forward-Facing Steps
,”
Phys. Fluids
,
23
(
4
), p.
045102
.
8.
Pearson
,
D. S.
,
Goular
,
P. J.
, and
Ganapathisubramani
,
B.
,
2013
, “
Turbulent Separation Upstream of a Forward-Facing Step
,”
J. Fluid Mech.
,
724
, pp.
284
304
.
9.
Tachie
,
M. F.
,
Balachandar
,
R.
, and
Bergstrom
,
D. J.
,
2001
, “
Open Channel Boundary Layer Relaxation Behind a Forward Facing Step at Low Reynolds Numbers
,”
ASME J. Fluids Eng.
,
123
(
3
), pp.
539
544
.
10.
Hattori
,
H.
, and
Nagano
,
Y.
,
2010
, “
Investigation of Turbulent Layer Over Forward-Facing Step Via Direct Numerical Simulation
,”
Int. J. Heat Fluid Flow
,
31
(
3
), pp.
284
294
.
11.
Scheit
,
C.
,
Esmaeili
,
A.
, and
Becker
,
S.
,
2013
, “
Direct Numerical Simulation of Flow Over a Forward-Facing Step—Flow Structure and Aeroacoustic Source Regions
,”
Int. J. Heat Fluid Flow
,
43
, pp.
184
193
.
12.
Eaton
,
J. K.
, and
Johnson
,
J. P.
,
1981
, “
A Review of Research on Subsonic Turbulent Flow Reattachment
,”
AIAA J.
,
19
(
9
), pp.
1093
1100
.
13.
Bradshaw
,
P.
, and
Wong
,
F. Y. F.
,
1972
, “
The Reattachment and Relaxation of a Turbulent Shear Layer
,”
J. Fluid Mech.
,
52
(
Pt. 1
), pp.
113
135
.
14.
Yoo
,
J. Y.
, and
Baik
,
S. J.
,
1992
, “
Redeveloping Turbulent Boundary Layer in the Backward-Facing Step Flow
,”
ASME J. Fluids Eng.
,
114
(
4
), pp.
522
529
.
15.
Bergeles
,
G.
, and
Athanassiadis
,
N.
,
1983
, “
The Flow Past a Surface-Mounted Obstacle
,”
ASME J. Fluids Eng.
,
105
(
4
), pp.
461
463
.
16.
Castro
,
I.
, and
Dianat
,
M.
,
1983
, “
Surface Flow Patterns on Rectangular Bodies in Thick Boundary Layers
,”
J. Wind Eng. Ind. Aerodyn.
,
11
(
1–3
), pp.
107
119
.
17.
Flack
,
K. A.
,
Schultz
,
M. P.
, and
Connelly
,
J. S.
,
2007
, “
Examination of a Critical Roughness Height for Boundary Layer Similarity
,”
Phys. Fluids
,
19
(
9
), p.
095104
.
18.
Flack
,
K. A.
, and
Schultz
,
M. P.
,
2010
, “
Review of Hydraulic Roughness Scales in the Fully Rough Regime
,”
ASME J. Fluids Eng.
,
132
(
4
), p.
041203
.
19.
De Brederode
,
V.
, and
Bradshaw
,
P.
,
1972
,
Three-Dimensional Flow in Nominally Two Dimensional Separation Bubbles Flow Behind a Rearward-Facing Step
, Imperial College of Science and Technology, Aeronautical Report No. 72-19.
20.
Coleman
,
H.
, and
Steele
,
W.
,
1995
, “
Engineering Application of Experimental Uncertainty Analysis
,”
AIAA J.
,
33
(
10
), pp.
1888
1895
.
21.
Forliti
,
D. J.
,
Strykowski
,
P. J.
, and
Debatin
,
K.
,
2000
, “
Bias and Precision Errors of Digital Particle Image Velocimetry
,”
Exp. Fluids
,
28
(
5
), pp.
436
447
.
22.
Holmes
,
P.
,
Lumley
,
J. L.
, and
Berkooz
,
G.
,
1996
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,
Cambridge University Press
,
New York
.
23.
Alfonsi
,
G.
, and
Primavera
,
L.
,
2007
, “
Dynamics of POD Modes in Wall Bounded Turbulent Flow
,”
Proc. R. Soc. London, Ser. A
,
463
, pp.
593
612
.
24.
Orrelano
,
A.
, and
Wengle
,
H.
,
2001
, “
POD Analysis of Coherent Structures in Forced Turbulent Flow Over a Fence
,”
J. Turbul.
,
2
, pp.
1
35
.
25.
Shah
,
M. K.
, and
Tachie
,
M. F.
,
2009
, “
Proper Orthogonal Decomposition Analysis of Separated and Reattached Pressure Gradient Turbulent Flows
,”
AIAA J.
,
47
(
11
), pp.
2616
2631
.
26.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures
,”
Parts I–III, Q. Appl. Math.
,
45
(
3
), pp.
561
590
.
27.
Meyer
,
E. K.
,
Pedersen
,
J. M.
, and
Özcan
,
O.
,
2007
, “
A Turbulent Jet in Crossflow Analyzed With Proper Orthogonal Decomposition
,”
J. Fluid Mech.
,
583
, pp.
199
227
.
28.
Oudheusden
,
B. W.
,
Scarano
,
F.
,
Hinsberg
,
N. P.
, and
Watt
,
D. W.
,
2005
, “
Phased-Resolved Characterization of Vortex Shedding in the Near Wake of a Square-Section Cylinder at Incidence
,”
Exp. Fluids
,
39
(
1
), pp.
86
98
.
29.
Namgyal
,
L.
, and
Hall
,
J. W.
,
2013
, “
Coherent Streamwise Vortex Structures in the Near-Field of the Three-Dimensional Wall Jet
,”
ASME J. Fluids Eng.
,
135
(
6
), p.
061204
.
You do not currently have access to this content.