Feedback stabilization of inviscid and high Reynolds number, axisymmetric, swirling flows in a long finite-length circular pipe using active variations of pipe geometry as a function of the evolving inlet radial velocity is studied. The complicated dynamics of the natural flow requires that any theoretical model that attempts to control vortex stability must include the essential nonlinear dynamics of the perturbation modes. In addition, the control methodology must establish a stable desired state with a wide basin of attraction. The present approach is built on a weakly nonlinear model problem for the analysis of perturbation dynamics on near-critical swirling flows in a slightly area-varying, long, circular pipe with unsteady changes of wall geometry. In the natural case with no control, flows with incoming swirl ratio above a critical level are unstable and rapidly evolve to either vortex breakdown states or accelerated flow states. Following an integration of the model equation, a perturbation kinetic-energy identity is derived, and an active feedback control methodology to suppress perturbations from a desired columnar state is proposed. The stabilization of both inviscid and high-Re flows is demonstrated for a wide range of swirl ratios above the critical swirl for vortex breakdown and for large-amplitude initial perturbations. The control gain for the fastest decay of perturbations is found to be a function of the swirl level. Large gain values are required at near-critical swirl ratios while lower gains provide a successful control at swirl levels away from critical. This feedback control technique cuts the feed-forward mechanism between the inlet radial velocity and the growth of perturbation's kinetic energy in the bulk and thereby enforces the decay of perturbations and eliminates the natural explosive evolution of the vortex breakdown process. The application of this proposed robust active feedback control method establishes a branch of columnar states with a wide basin of attraction for swirl ratios up to at least 50% above the critical swirl. This study provides guidelines for future flow control simulations and experiments. However, the present methodology is limited to the control of high-Reynolds number (nearly inviscid), axisymmetric, weakly nonparallel flows in long pipes.

References

1.
Sarpkaya
,
T.
,
1971
, “
On Stationary and Traveling Vortex Breakdowns
,”
J. Fluid Mech.
,
45
(
3
), pp.
545
559
.
2.
Sarpkaya
,
T.
,
1974
, “
Effect of Adverse Pressure-Gradient on Vortex Breakdown
,”
AIAA J.
,
12
(
5
), pp.
602
607
.
3.
Garg
,
A. K.
, and
Leibovich
,
S.
,
1979
, “
Spectral Characteristics of Vortex Breakdown Flow Field
,”
Phys. Fluid
,
22
(
11
), pp.
2053
2064
.
4.
Leibovich
,
S.
,
1984
, “
Vortex Stability and Breakdown: Survey and Extension
,”
AIAA J.
,
22
(
9
), pp.
1192
1206
.
5.
Brücker
,
Ch.
, and
Althaus
,
W.
,
1995
, “
Study of Vortex Breakdown by Particle Tracking Velocimetry (PTV), Part 3: Time-Dependent Structure and Development of Breakdown Modes
,”
Exp. Fluids
,
18
(
3
), pp.
174
186
.
6.
Sarpkaya
,
T.
,
1995
, “
Turbulent Vortex Breakdown
,”
Phys. Fluids
,
7
(
10
), pp.
2301
2303
.
7.
Mitchell
,
A. M.
, and
Delery
,
J.
,
2001
, “
Research Into Vortex Breakdown Control
,”
Prog. Aerosp. Sci.
,
37
(
4
), pp.
385
418
.
8.
Benjamin
,
T. B.
,
1962
, “
Theory of the Vortex Breakdown Phenomenon
,”
J. Fluid Mech.
,
14
(
4
), pp.
593
629
.
9.
Leibovich
,
S.
, and
Randall
,
J. D.
,
1972
, “
Solitary Waves in Concentrated Vortices
,”
J. Fluid Mech.
,
51
(
4
), pp.
625
635
.
10.
Randall
,
J. D.
, and
Leibovich
,
S.
,
1973
, “
The Critical State: A Trapped Wave Model of Vortex Breakdown
,”
J. Fluid Mech.
,
58
(
3
), pp.
495
515
.
11.
Leibovich
,
S.
, and
Kribus
,
A.
,
1990
, “
Large Amplitude Wavetrains and Solitary Waves in Vortices
,”
J. Fluid Mech.
,
216
, pp.
459
504
.
12.
Grimshaw
,
R.
, and
Yi
,
Z.
,
1993
, “
Resonant Generation of Finite-Amplitude Waves by the Flow of a Uniformly Rotating Fluid Past an Obstacle
,”
Mathematika
,
40
(
1
), pp.
30
50
.
13.
Hanazaki
,
H.
,
1996
, “
On the Wave Excitation and the Formation of Recirculation Eddies in an Axisymmetric Flow of Uniformly Rotating Fluids
,”
J. Fluid Mech.
,
322
, pp.
165
200
.
14.
Keller
,
J. J.
,
Egli
,
W.
, and
Exley
,
W.
,
1985
, “
Force- and Loss-Free Transitions Between Flow States
,”
Z. Angew. Math. Phys.
,
36
(
6
), pp.
854
889
.
15.
Rusak
,
Z.
,
1996
, “
Axisymmetric Swirling Flow Around a Vortex Breakdown Point
,”
J. Fluid Mech.
,
323
, pp.
79
105
.
16.
Wang
,
S.
, and
Rusak
,
Z.
,
1996
, “
On the Stability of an Axisymmetric Rotating Flow in a Pipe
,”
Phys. Fluids
,
8
(
4
), pp.
1007
1016
.
17.
Gallaire
,
F.
, and
Chomaz
,
J.-M.
,
2004
, “
The Role of Boundary Conditions in a Simple Model of Incipient Vortex Breakdown
,”
Phys. Fluids
,
16
(
2
), pp.
274
286
.
18.
Leclaire
,
B.
, and
Sipp
,
D.
,
2010
, “
A Sensitivity Study of Vortex Breakdown Onset to Upstream Boundary Conditions
,”
J. Fluid Mech.
,
645
, pp.
81
119
.
19.
Wang
,
S.
, and
Rusak
,
Z.
,
2011
, “
Energy Transfer Mechanism of the Instability of an Axisymmetric Swirling Flow in a Finite-Length Pipe
,”
J. Fluid Mech.
,
679
, pp.
505
543
.
20.
Lord
Kelvin
,
1880
, “
Vibrations of a Columnar Vortex
,”
Philos. Mag.
,
10
(
61
), pp.
155
168
.
21.
Lord
Rayleigh
,
1917
, “
On the Dynamics of Revolving Fluids
,”
Proc. R. Soc. London, Ser. A
,
93
(
648
), pp.
148
154
.
22.
Synge
,
L.
,
1933
, “
The Stability of Heterogeneous Liquids
,”
Trans. R. Soc. Can.
,
27
, pp.
1
18
.
23.
Howard
,
L. N.
, and
Gupta
,
A. S.
,
1962
, “
On the Hydrodynamics and Hydromagnetic Stability of Swirling Flows
,”
J. Fluid Mech.
,
14
(
3
), pp.
463
476
.
24.
Rusak
,
Z.
,
Wang
,
S.
,
Xu
,
L.
, and
Taylor
,
S.
,
2012
, “
On the Global Nonlinear Stability of a Near-Critical Swirling Flow in a Long Finite-Length Pipe and the Path to Vortex Breakdown
,”
J. Fluid Mech.
,
712
, pp.
295
326
.
25.
Wang
,
S.
, and
Rusak
,
Z.
,
1997
, “
The Dynamics of a Swirling Flow in a Pipe and Transition to Axisymmetric Vortex Breakdown
,”
J. Fluid Mech.
,
340
, pp.
177
223
.
26.
Wang
,
S.
, and
Rusak
,
Z.
,
1997
, “
The Effect of Slight Viscosity on Near-Critical Swirling Flow in a Pipe
,”
Phys. Fluids
,
9
(
7
), pp.
1914
1927
.
27.
Beran
,
P. S.
, and
Culick
,
F. E. C.
,
1992
, “
The Role of Non-Uniqueness in the Development of Vortex Breakdown in Tubes
,”
J. Fluid Mech.
,
242
, pp.
491
527
.
28.
Beran
,
P. S.
,
1994
, “
The Time-Asymptotic Behavior of Vortex Breakdown in Tubes
,”
Comput. Fluids
,
23
(
7
), pp.
913
937
.
29.
Lopez
,
J. M.
,
1994
, “
On the Bifurcation Structure of Axisymmetric Vortex Breakdown in a Constricted Pipe
,”
Phys. Fluids
,
6
(
11
), pp.
3683
3693
.
30.
Meliga
,
P.
, and
Gallaire
,
F.
,
2011
, “
Control of Axisymmetric Vortex Breakdown in a Constricted Pipe: Nonlinear Steady States and Weakly Nonlinear Asymptotic Expansions
,”
Phys. Fluids
,
23
(
8
), p.
084102
.
31.
Mattner
,
T. W.
,
Joubert
,
P. N.
, and
Chong
,
M. S.
,
2002
, “
Vortical Flow, Part 1: Flow Through a Constant Diameter Pipe
,”
J. Fluid Mech.
,
463
, pp.
259
291
.
32.
Rusak
,
Z.
,
Whiting
,
C. H.
, and
Wang
,
S.
,
1998
, “
Axisymmetric Breakdown of a Q-Vortex in a Pipe
,”
AIAA J.
,
36
(
10
), pp.
1848
1853
.
33.
Rusak
,
Z.
, and
Lamb
,
D.
,
1999
, “
Prediction of Vortex Breakdown in Leading-Edge Vortices Above Slender Delta Wings
,”
J. Aircr.
,
36
(
4
), pp.
659
667
.
34.
Rusak
,
Z.
, and
Judd
,
K. P.
,
2001
, “
The Stability of Non-Columnar Swirling Flows in Diverging Streamtubes
,”
Phys. Fluids
,
13
(
10
), pp.
2835
2844
.
35.
Gallaire
,
F.
,
Chomaz
,
J.-M.
, and
Huerre
,
P.
,
2004
, “
Closed-Loop Control of Vortex Breakdown: A Model Study
,”
J. Fluid Mech.
,
511
, pp.
67
93
.
36.
Wang
,
S.
,
Rusak
,
Z.
,
Taylor
,
S.
, and
Gong
,
R.
,
2013
, “
On the Active Feedback Control of a Swirling Flow in a Finite-Length Pipe
,”
J. Fluid Mech.
,
737
, pp.
280
307
.
37.
Novak
,
F.
, and
Sarpkaya
,
T.
,
2000
, “
Turbulent Vortex Breakdown at High Reynolds Numbers
,”
AIAA J.
,
38
(
5
), pp.
825
834
.
38.
Szeri
,
A.
, and
Holmes
,
P.
,
1988
, “
Nonlinear Stability of Axisymmetric Swirling Flows
,”
Philos. Trans. R. Soc. London, Ser. A
,
326
(
1590
), pp.
327
354
.
39.
Rusak
,
Z.
,
1998
, “
The Interaction of Near-Critical Swirling Flows in a Pipe With Inlet Azimuthal Vorticity Perturbations
,”
Phys. Fluids
,
10
(
7
), pp.
1672
1684
.
40.
Kucuk
,
I.
,
2010
, “
Active Optimal Control of the KdV Equation Using the Variational Iteration Method
,”
Math. Prob. Eng.
,
2010
, p.
929103
.
41.
Rusak
,
Z.
, and
Lee
,
J. H.
,
2002
, “
The Effect of Compressibility on the Critical Swirl of Vortex Flows in a Pipe
,”
J. Fluid Mech.
,
461
, pp.
301
319
.
42.
Rusak
,
Z.
,
Kapila
,
A. K.
, and
Choi
,
J. J.
,
2002
, “
Effect of Combustion on Near-Critical Swirling Flow
,”
Combust. Theory Modell.
,
6
(
4
), pp.
625
645
.
You do not currently have access to this content.