Mixing of a passive scalar in a high-Schmidt turbulent round jet was studied using large-eddy simulation (LES) coupled to filtered density function (FDF). This coupled approach enabled the solution of the continuity, momentum, and scalar (concentration) transport equations when studying mixing in a confined turbulent liquid jet discharging a conserved scalar (rhodamine B) into a low-velocity water stream. The Monte Carlo method was used for solving the FDF transport equation and controlling the number of particles per cell (NPC) using a clustering and splitting algorithm. A sensibility analysis of the number of stochastic particles per cell as well as the influence of the subgrid-scale (SGS) mixing time constant were evaluated. The comparison of simulation results with experiments showed that LES/FDF satisfactorily reproduced the behavior observed in this flow configuration. At high radial distances, the developed superviscous layer generates an intermittency phenomenon leading to a complex, anisotropic behavior of the scalar field, which is difficult to simulate with the conventional and advanced SGS models required by LES. This work showed a close agreement with reported experimental data at this superviscous layer following the FDF approach.
Skip Nav Destination
Article navigation
February 2016
Research-Article
Scalar Mixing Study at High-Schmidt Regime in a Turbulent Jet Flow Using Large-Eddy Simulation/Filtered Density Function Approach
Juan M. Mejía,
Juan M. Mejía
Departamento de Procesos y Energía,
Universidad Nacional de Colombia,
Cr. 80 No. 65-223,
Medellín 050034, Colombia
e-mail: jmmejiaca@unal.edu.co
Universidad Nacional de Colombia,
Cr. 80 No. 65-223,
Medellín 050034, Colombia
e-mail: jmmejiaca@unal.edu.co
Search for other works by this author on:
Farid Chejne,
Farid Chejne
Departamento de Procesos y Energía,
Universidad Nacional de Colombia,
Cr. 80 No. 65-223,
Medellín 050034, Colombia
e-mail: fchejne@unal.edu.co
Universidad Nacional de Colombia,
Cr. 80 No. 65-223,
Medellín 050034, Colombia
e-mail: fchejne@unal.edu.co
Search for other works by this author on:
Alejandro Molina,
Alejandro Molina
Departamento de Procesos y Energía,
Universidad Nacional de Colombia,
Cr. 80 No. 65-223,
Medellín 050034, Colombia
e-mail: amolinao@unal.edu.co
Universidad Nacional de Colombia,
Cr. 80 No. 65-223,
Medellín 050034, Colombia
e-mail: amolinao@unal.edu.co
Search for other works by this author on:
Amsini Sadiki
Amsini Sadiki
Institute of Energy and Power Plant Technology,
Technischen Universität Darmstadt,
Jovanka-Bontschits-Str. 2,
Darmstadt D-64287, Germany
e-mail: sadiki@ekt.tu-darmstadt.de
Technischen Universität Darmstadt,
Jovanka-Bontschits-Str. 2,
Darmstadt D-64287, Germany
e-mail: sadiki@ekt.tu-darmstadt.de
Search for other works by this author on:
Juan M. Mejía
Departamento de Procesos y Energía,
Universidad Nacional de Colombia,
Cr. 80 No. 65-223,
Medellín 050034, Colombia
e-mail: jmmejiaca@unal.edu.co
Universidad Nacional de Colombia,
Cr. 80 No. 65-223,
Medellín 050034, Colombia
e-mail: jmmejiaca@unal.edu.co
Farid Chejne
Departamento de Procesos y Energía,
Universidad Nacional de Colombia,
Cr. 80 No. 65-223,
Medellín 050034, Colombia
e-mail: fchejne@unal.edu.co
Universidad Nacional de Colombia,
Cr. 80 No. 65-223,
Medellín 050034, Colombia
e-mail: fchejne@unal.edu.co
Alejandro Molina
Departamento de Procesos y Energía,
Universidad Nacional de Colombia,
Cr. 80 No. 65-223,
Medellín 050034, Colombia
e-mail: amolinao@unal.edu.co
Universidad Nacional de Colombia,
Cr. 80 No. 65-223,
Medellín 050034, Colombia
e-mail: amolinao@unal.edu.co
Amsini Sadiki
Institute of Energy and Power Plant Technology,
Technischen Universität Darmstadt,
Jovanka-Bontschits-Str. 2,
Darmstadt D-64287, Germany
e-mail: sadiki@ekt.tu-darmstadt.de
Technischen Universität Darmstadt,
Jovanka-Bontschits-Str. 2,
Darmstadt D-64287, Germany
e-mail: sadiki@ekt.tu-darmstadt.de
1Corresponding author.
Contributed by the Fluids Engineering Division of ASME for publication in the JOURNAL OF FLUIDS ENGINEERING. Manuscript received December 7, 2014; final manuscript received September 15, 2015; published online October 26, 2015. Assoc. Editor: Samuel Paolucci.
J. Fluids Eng. Feb 2016, 138(2): 021205 (9 pages)
Published Online: October 26, 2015
Article history
Received:
December 7, 2014
Revised:
September 15, 2015
Citation
Mejía, J. M., Chejne, F., Molina, A., and Sadiki, A. (October 26, 2015). "Scalar Mixing Study at High-Schmidt Regime in a Turbulent Jet Flow Using Large-Eddy Simulation/Filtered Density Function Approach." ASME. J. Fluids Eng. February 2016; 138(2): 021205. https://doi.org/10.1115/1.4031631
Download citation file:
Get Email Alerts
Cited By
Wake Dynamics of Complex Turning Vanes Using Time-Resolved Particle Image Velocimetry Measurements
J. Fluids Eng (January 2025)
Control of Flow and Acoustic Fields Around an Axial Fan Utilizing Plasma Actuators
J. Fluids Eng (January 2025)
Related Articles
Large Eddy Simulation of the Mixing of a Passive Scalar in a High-Schmidt Turbulent Jet
J. Fluids Eng (March,2015)
Flow Dynamics and Mixing of a Transverse Jet in Crossflow—Part II: Oscillating Crossflow
J. Eng. Gas Turbines Power (August,2017)
Large Eddy Simulation of Film Cooling Flow From an Inclined Cylindrical Jet
J. Turbomach (October,2003)
A Comparison of Single and Multiphase Jets in a Crossflow Using Large Eddy Simulations
J. Eng. Gas Turbines Power (January,2007)
Related Proceedings Papers
Related Chapters
Large Eddy Simulations of a Confined Tip-Leakage Cavitating Flow with Special Emphasis on Vortex Dynamics
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Cavitating Structures at Inception in Turbulent Shear Flow
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
An Investigation of Tip-Vortex Turbulence Structure using Large-Eddy Simulation
Proceedings of the 10th International Symposium on Cavitation (CAV2018)