Mixing of a passive scalar in a high-Schmidt turbulent round jet was studied using large-eddy simulation (LES) coupled to filtered density function (FDF). This coupled approach enabled the solution of the continuity, momentum, and scalar (concentration) transport equations when studying mixing in a confined turbulent liquid jet discharging a conserved scalar (rhodamine B) into a low-velocity water stream. The Monte Carlo method was used for solving the FDF transport equation and controlling the number of particles per cell (NPC) using a clustering and splitting algorithm. A sensibility analysis of the number of stochastic particles per cell as well as the influence of the subgrid-scale (SGS) mixing time constant were evaluated. The comparison of simulation results with experiments showed that LES/FDF satisfactorily reproduced the behavior observed in this flow configuration. At high radial distances, the developed superviscous layer generates an intermittency phenomenon leading to a complex, anisotropic behavior of the scalar field, which is difficult to simulate with the conventional and advanced SGS models required by LES. This work showed a close agreement with reported experimental data at this superviscous layer following the FDF approach.

References

1.
Mejía
,
J. M.
,
Sadiki
,
A.
,
Molina
,
A.
,
Chejne
,
F.
, and
Pantangi
,
P.
,
2015
, “
Large Eddy Simulation of the Mixing of a Passive Scalar in a High-Schmidt Turbulent Jet
,”
ASME J. Fluid Eng.
,
137
(
3
), p.
031301
.
2.
Eidson
,
T.
,
1985
, “
Numerical Simulation the Turbulent Rayleigh–Bénard Problem Using Subgrid Modeling
,”
J. Fluid Mech.
,
158
, pp.
245
268
.
3.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
,
3
(
7
), pp.
1760
1765
.
4.
Moin
,
P.
,
Squires
,
K.
,
Cabot
,
W.
, and
Lee
,
S.
,
1991
, “
A Dynamic Subgrid-Scale Model for Compressible Turbulence and Scalar Transport
,”
Phys. Fluids A
,
3
(
11
), pp.
2746
2757
.
5.
Huai
,
Y.
,
2005
, “
Large Eddy Simulation in the Scalar Field
,” Ph.D. thesis, Technische Universität Darmstadt, Darmstadt, Germany.
6.
Huai
,
Y.
, and
Sadiki
,
A.
,
2007
, “
Large Eddy Simulation of Mixing Processes in Turbulent Liquid Flows With Chemical Reactions
,”
5th International Symposium on Turbulence and Shear Flow Phenomena
,
R.
Friedrich
,
N. A.
Adams
,
J. K.
Eaton
,
J. A. C.
Humphrey
,
N.
Kasagi
, and M. A. Leschziner, eds., Munich, Germany, pp.
1137
1142
.
7.
Colucci
,
P. J.
,
Jaberi
,
F. A.
,
Givi
,
P.
, and
Pope
,
S. B.
,
1998
, “
Filtered Density Function for Large Eddy Simulation Turbulent Reacting Flows
,”
Phys. Fluids
,
10
(
2
), pp.
499
516
.
8.
Jaberi
,
F. A.
,
Colucci
,
P. J.
,
James
,
S.
,
Givi
,
P.
, and
Pope
,
S. B.
,
1999
, “
Filtered Mass Density Function for Large Eddy Simulation Turbulent Reacting Flows
,”
J. Fluid Mech.
,
401
, pp.
85
121
.
9.
Riley
,
J. J.
,
2004
, “
Review of Large-Eddy Simulation of Non-Premixed Turbulent Combustion
,”
ASME J. Fluids Eng.
,
128
(
2
), pp.
209
215
.
10.
Wang
,
L.
,
2007
, “
On Discrete Representation Filtered Density Functions for Turbulent Combustion
,”
Annu. Res. Briefs Center Turbul. Res.
,
2007
, pp.
219
229
.
11.
Dopazo
,
C.
, and
O'Brien
,
E. E.
,
1976
, “
Statistical Treatment Non-Isothermal Chemical Reactions in Turbulence
,”
Combust. Sci. Tech.
,
13
(1–6), pp.
99
112
.
12.
O'Brien
,
E. E.
,
1980
, “
The Probability Density Function (PDF) Approach to Reacting Turbulent Flows
,”
Turbulent Reacting Flows
,
P. A.
Libby
, and
F. A.
Williams
, eds.,
Springer-Verlag, Berlin
, Heidelberg, pp.
185
218
.
13.
Pope
,
S. B.
,
1985
, “
PDF Methods for Turbulent Reactive Flow
,”
Prog. Energy Combust. Sci.
,
11
(
2
), pp.
119
192
.
14.
Shetty
,
D. A.
,
Chandy
,
A. J.
, and
Frankel
,
S. H.
,
2010
, “
A New Fractal Interaction by Exchange With the Mean Mixing Model for Large Eddy Simulation/Filtered Mass Density Function Applied to a Multiscalar Three-Stream Turbulent Jet
,”
Phys. Fluids
,
22
(
2
), p.
025102
.
15.
Mitarai
,
S.
,
Riley
,
J. J.
, and
Kosály
,
G.
,
2005
, “
Testing Mixing Models for Monte Carlo Probability Density Function Simulations
,”
Phys. Fluids
,
17
(
4
), p.
047101
.
16.
Meyer
,
D. W.
, and
Jenny
,
P.
,
2009
, “
Micromixing Models for Turbulent Flows
,”
J. Comput. Phys.
,
228
(
4
), pp.
1275
1293
.
17.
van Vliet
,
E.
,
Derksen
,
J. J.
, and
van den Akker
,
H. E. A.
,
2005
, “
Turbulent Mixing in a Tubular Reactor: Assessment an FDF/LES Approach
,”
AIChE J.
,
51
(
3
), pp.
725
739
.
18.
Mustata
,
R.
,
Valiño
,
L.
,
Jiménez
,
C.
,
Jones
,
W. P.
, and
Bondi
,
S.
,
2006
, “
A Probability Density Function Eulerian Monte Carlo Field Method for Large Eddy Simulations: Application to a Turbulent Piloted Methane/Air Diffusion Flame (Sandia D)
,”
Combust. Flame
,
145
(1–2), pp.
88
104
.
19.
Olbricht
,
C.
,
Hahn
,
F.
,
Sadiki
,
A.
, and
Janicka
,
J.
,
2007
, “
Analysis Subgrid Scale Mixing Using a Hybrid LES-Monte-Carlo PDF Method
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1215
1226
.
20.
Yaldizli
,
M.
,
Mehravaran
,
K.
, and
Jaberi
,
F. A.
,
2010
, “
Large-Eddy Simulations Turbulent Methane Jet Flames With Filtered Mass Density Function
,”
Int. J. Heat Mass Transfer
,
53
(11–12), pp.
2551
2562
.
21.
Zhao
,
W.
,
Zhang
,
C.
, and
Chen
,
C.
,
2011
, “
Large Eddy Simulation of Bluff-Body Stabilized Flames Using a Multi-Environment Filtered Density Function Model
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1347
1353
.
22.
McDermott
,
R.
, and
Pope
,
S. B.
,
2007
, “
A Particle Formulation for Treating Differential Diffusion in Filtered Density Function Methods
,”
J. Comput. Phys.
,
226
(
1
), pp.
947
993
.
23.
van Vliet
,
E.
,
Derksen
,
J. J.
,
van den Akker
,
H. E. A.
, and
Fox
,
R. O.
,
2007
, “
Numerical Study on the Turbulent Reacting Flow in the Vicinity the Injector an LDPE Tubular Reactor
,”
Chem. Eng. Sci.
,
62
(
9
), pp.
2435
2444
.
24.
Schwertfirm
,
F.
, and
Manhart
,
M.
,
2009
, “
A-Priori Analysis the LMSE Micromixing Model for Filtered-Density Function Simulation in High Schmidt Number Flows
,”
High Performance Computing in Science Engineering, Garching/Munich 2007
,
S.
Wagner
, M. Steinmetz, A. Bode, and E. Brehm, eds.,
Springer-Verlag, Berlin, Heidelberg
, pp.
303
314
.
25.
Schwertfirm
,
F.
, and
Manhart
,
M.
,
2010
, “
Development a DNS–FDF Approach to Inhomogeneous Non-Equilibrium Mixing for High Schmidt Number Flows
,”
Direct and Large-Eddy Simulation VII
,
V.
Armenio
, B. Guerts, and J. Froehlich, eds.,
Springer
,
The Netherlands
, pp.
153
159
.
26.
Schwertfirm
,
F.
, and
Manhart
,
M.
,
2010
, “
A Numerical Approach for Simulation Turbulent Mixing and Chemical Reaction at High Schmidt Numbers
,”
Micro and Macro Mixing: Analysis, Simulation and Numerical Calculation
,
H.
Bockhorn
, D. Mewes, W. Peukert, and H. J. Warnecke, eds.,
Springer-Verlag, Berlin, Heidelberg
, pp.
305
324
.
27.
Pope
,
S. B.
,
1990
, “
Computations of Turbulent Combustion: Progress and Challenges
,”
Proc. Combust. Inst.
,
23
(1), pp.
591
612
.
28.
Heinz
,
S.
,
2003
, “
On Fokker–Planck Equations for Turbulent Reacting Flows. Part 2. Filter Density Function for Large Eddy Simulation
,”
Flow, Turbul. Combust.
,
70
(1), pp.
153
181
.
29.
Klimenko
,
A. Y.
,
2007
, “
On Simulating Scalar Transport by Mixing Between Lagrangian Particles
,”
Phys. Fluids
,
19
(
3
), pp.
31702
31704
.
30.
Haworth
,
D. C.
,
2010
, “
Progress in Probability Density Function Methods for Turbulent Reacting Flows
,”
Prog. Energy Combust. Sci.
,
36
(
2
), pp.
168
259
.
31.
Haworth
,
D. C.
, and
Pope
,
S. B.
,
2011
, “
Transported Probability Density Function Methods for Reynolds-Averaged and Large-Eddy Simulations
,”
Turbulent Combustion Modeling: Advances, New Trends and Perspectives
,
T.
Echekki
and
E.
Mastorakos
, eds.,
Springer
,
The Netherlands
, pp.
119
142
.
32.
Ottinger
,
H. C.
,
1996
,
Stochastic Processes in Polymeric Fluids: Tools Examples for Developing Simulation Algorithms
,
Springer-Verlag, Berlin
, Heidelberg.
33.
Antoine
,
Y.
,
Lemoine
,
F.
, and
Lebouché
,
M.
,
2001
, “
Turbulent Transport a Passive Scalar in a Round Jet Discharging Into a Co-Flowing Stream
,”
Eur. J. Mech. B
,
20
(
2
), pp.
275
301
.
34.
Durst
,
F.
, and
Schäfer
,
M.
,
1996
, “
A Parallel Blockstructured Multigrid Method for the Prediction Incompressible Flow
,”
Int. J. Numer. Methods Fluids
,
22
(
6
), pp.
549
565
.
35.
Löhner
,
R.
,
1995
, “
Robust, Vectorized Search Algorithms for Interpolation on Unstructured Grids
,”
J. Comput. Phys.
,
118
(2), pp.
307
313
.
36.
Lubbers
,
C. L.
,
Brethouwer
,
G.
, and
Boersma
,
B. J.
,
2001
, “
Simulation the Mixing a Passive Scalar in a Round Turbulent Jet
,”
Fluid Dyn. Res.
,
28
(
3
), pp.
189
208
.
37.
Babu
,
P. C.
,
2007
, “
Simulation & Modeling Three Turbulent Flow Problems
,” Ph.D. thesis, University Minnesota, Minneapolis, MN.
38.
Sheikhi
,
M. R. H.
,
Drozda
,
T. G.
,
Givi
,
P.
,
Jaberi
,
F. A.
, and
Pope
,
S. B.
,
2005
, “
Large Eddy Simulation a Turbulent Nonpremixed Piloted Methane Jet Flame (Sandia Flame D)
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
549
556
.
39.
Townsend
,
A. A.
,
1976
,
The Structure Turbulent Shear Flow
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
40.
Dowling
,
D. R.
, and
Dimotakis
,
P. E.
,
1990
, “
Similarity on the Concentration Field Gas-Phase Turbulent Jets
,”
J. Fluid Mech.
,
218
, pp.
109
141
.
41.
Dahm
,
W. J. A.
,
1985
, “
Experiments on Entrainment, Mixing and Reaction in Turbulent Jets at Large Schmidt Number
,” Ph.D. thesis, California Institute of Technology, Pasadena, CA.
You do not currently have access to this content.