Flow instabilities in hydraulic machines often feature oscillating cavitation volumes, which locally introduce compliance and mass flow gain effects. These unsteady characteristics play a crucial role in one-dimensional stability models and can be determined through the definition of transfer functions for the state variables, where the cavitation volume is commonly estimated from the discharge difference between two points located upstream and downstream of the cavity. This approach is demonstrated on a test rig with a microturbine, featuring a self-oscillating vortex rope in its conical draft tube. The fluctuating discharges at the turbine inlet and the draft tube outlet are determined with the pressure–time method using differential pressure transducers. The cavitation volume is then calculated by integrating the corresponding discharge difference over time. In order to validate the results, an alternative volume approximation method is presented, based on the image processing of a high-speed flow visualization. In this procedure, the edges of the vortex rope are detected to calculate the local cross section areas of the cavity. It is shown that the cavitation volumes obtained by the two methods are in good agreement. Thus, the fluctuating part of the cavitation volume oscillation can be accurately estimated by integrating the difference between the volumetric upstream and downstream discharges. Finally, the volume and discharge fluctuations from the pressure–time method are averaged over one mean period of the pressure oscillation. This enables an analysis of the key physical flow parameters’ behavior over one characteristic period of the instability and a discussion of its sustaining mechanisms.

References

1.
Susan-Resiga
,
R.
,
Ciocan
,
G.
,
Anton
,
I.
, and
Avellan
,
F.
,
2006
, “
Analysis of the Swirling Flow Downstream a Francis Turbine Runner
,”
ASME J. Fluids Eng.
,
128
(
1
), pp.
177
189
.
2.
Rheingans
,
W. J.
,
1940
, “
Power Swings in Hydroelectric Power Plants
,”
Trans. ASME
,
62
, pp.
171
184
.
3.
Dörfler
,
P.
,
1985
, “
Francis Turbine Surge Prediction and Prevention
,” Waterpower 85, ASCE, pp.
952
961
.
4.
Jacob
,
T.
,
Prenat
,
J.
, and
Maria
,
D.
,
1988
, “
Dynamic Behavior at High Load of a Francis Water Turbine. Model/Prototype Comparison
,”
Houille Blanche
,
3–4
, pp.
293
300
.
5.
Paynter
,
H. M.
,
1953
, “
Electrical Analogies and Electronic Computers: A Symposium: Surge and Water Hammer Problems
,”
Trans. Am. Soc. Civil Eng.
,
118
(
1
), pp.
962
989
.
6.
Nicolet
,
C.
,
2007
, “
Hydroacoustic\ing and Numerical Simulation of Unsteady Operation of Hydroelectric Systems
,” Ph.D. thesis,
Ecole Polytechnique Fédérale de Lausanne
,
Lausanne, Switzerland
.
7.
Dörfler
,
P.
,
2009
, “
Evaluating 1D Models for Vortex-Induced Pulsation in Francis Turbines
,”
3rd Meeting of the IAHR Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems
,
Brno, Czech Republic
, pp.
14
16
.
8.
Alligné
,
S.
,
2011
, “
Forced and Self Oscillations of Hydraulic Systems Induced by Cavitation Vortex Rope of Francis Turbines
,” Ph.D. thesis,
Ecole Polytechnique Fédérale de Lausanne
,
Lausanne, Switzerland
.
9.
Landry
,
C.
,
Nicolet
,
C.
,
Bergant
,
A.
,
Müller
,
A.
, and
Avellan
,
F.
,
2012
, “
Modeling of Unsteady Friction and Viscoelastic Damping in Piping Systems
,”
IOP Conf. Ser. Earth Environ. Sci.
,
15
(
5
), p.
052030
.
10.
Alligne
,
S.
,
Nicolet
,
C.
,
Tsujimoto
,
Y.
, and
Avellan
,
F.
,
2014
, “
Cavitation Surge Modelling in Francis Turbine Draft Tube
,”
J. Hydraul. Res.
,
52
(
3
), pp.
399
411
.
11.
Landry
,
C.
,
Favrel
,
A.
,
Müller
,
A.
,
Nicolet
,
C.
, and
Avellan
,
F.
,
2015
, “
Local Wave Speed and Bulk Viscosity in Francis Turbines at Part Load Operation
,”
J. Hydraul. Res.
(in press).
12.
Koutnik
,
J.
,
Nicolet
,
C.
,
Schohl
,
G. A.
, and
Avellan
,
F.
,
2006
, “
Overload Surge Event in a Pumped Storage Power Plant
,”
23th IAHR Symposium on Hydraulic Machinery and Systems
,
Yokohama
,
Japan
.
13.
Chen
,
C.
,
Nicolet
,
C.
,
Yonezawa
,
K.
,
Farhat
,
M.
,
Avellan
,
F.
, and
Tsujimoto
,
Y.
,
2008
, “
One-Dimensional Analysis of Full Load Draft Tube Surge
,”
ASME J. Fluids Eng.
,
130
(
4
), p.
041106
.
14.
Brennen
,
C.
, and
Acosta
,
A.
,
1976
, “
Dynamic Transfer Function for a Cavitating Inducer
,”
ASME J. Fluids Eng.
,
98 Ser 1
(
2
), pp.
182
191
.
15.
Braisted
,
D.
, and
Brennen
,
C.
,
1980
, “
Auto-Oscillation of Cavitating Inducers
,”
Polyphase Flow and Transport Technology
, ASME, pp.
157
166
.
16.
Tsujimoto
,
Y.
,
Kamijo
,
K.
, and
Yoshida
,
Y.
,
1993
, “
A Theoretical Analysis of Rotating Cavitation in Inducers
,”
ASME J. Fluids Eng.
,
115
(
1
), pp.
135
141
.
17.
Koutnik
,
J.
, and
Pulpitel
,
L.
,
1996
, “
Modeling of the Francis Turbine Full-Load Surge
,”
Modeling, Testing and Monitoring for Hydro Power Plants
,
Lausanne
,
Switzerland
.
18.
Philibert
,
R.
, and
Couston
,
M.
,
1998
, “
Francis Turbines at Part Load, Matrix Simulating the Gaseous Rope
,” 19th IAHR Symposium on Hydraulic Machinery and Cavitation, Singapore, Sept. 9–11.
19.
Yonezawa
,
K.
,
Konishi
,
D.
,
Miyagawa
,
K.
,
Avellan
,
F.
,
Dörfler
,
P.
, and
Tsujimoto
,
Y.
,
2012
, “
Cavitation Surge in a Small Model Test Facility Simulating a Hydraulic Power Plant
,”
Int. J. Fluid Mach. Syst.
,
5
(
4
), pp.
152
160
.
20.
Dörfler
,
P.
, and
Ruchonnet
,
N.
,
2012
, “
A Statistical Method for Draft Tube Pressure Pulsation Analysis
,”
Earth Environ. Sci.
,
15
(
6
), p.
062002
.
21.
Gibson
,
N. R.
,
1923
,
The Gibson Method and Apparatus for Measuring the Flow of Water in Closed Conduits
, ASME, pp.
343
392
.
22.
Kashima
,
A.
,
Lee
,
P. J.
,
Ghidaoui
,
M. S.
, and
Davidson
,
M.
,
2013
, “
Experimental Verification of the Kinetic Differential Pressure Method for Flow Measurements
,”
J. Hydraul. Res.
,
51
(
6
), pp.
634
644
.
23.
Yamamoto
,
K.
,
Müller
,
A.
,
Ashida
,
T.
,
Yonezawa
,
K.
,
Avellan
,
F.
, and
Tsujimoto
,
Y.
, “
Experimental Method for the Evaluation of the Dynamic Transfer Matrix Using Pressure Transducers
,”
J. Hydraul. Res.
,
53
(
4
), pp.
466
477
.
24.
Müller
,
A.
,
Dreyer
,
M.
,
Andreini
,
N.
, and
Avellan
,
F.
,
2013
, “
Draft Tube Discharge Fluctuation During Self-Sustained Pressure Surge: Fluorescent Particle Image Velocimetry in Two-Phase Flow
,”
Exp. Fluids
,
54
(
4
), pp.
1
11
.
25.
Stoer
,
J.
,
Bulirsch
,
R.
,
Bartels
,
R.
,
Gautschi
,
W.
, and
Witzgall
,
C.
,
2002
, “
Introduction to Numerical Analysis
,”
Introduction to Numerical Analysis
, (Texts in Applied Mathematics),
Springer
,
New York
.
26.
Otsu
,
N.
,
1979
, “
Threshold Selection Method From Gray-Level Histograms
,”
IEEE Trans. Syst. Man Cybern.
,
9
(
1
), pp.
62
66
.
27.
Bendat
,
J. S.
, and
Piersol
,
A. G.
,
2010
,
Random Data: Analysis and Measurement Procedures
, 4th ed.,
Wiley
,
Hoboken, NJ
.
28.
Müller
,
A.
,
Favrel
,
A.
,
Landry
,
C.
,
Yamamoto
,
K.
, and
Avellan
,
F.
,
2014
, “
On the Physical Mechanisms Governing Self-Excited Pressure Surge in Francis Turbines
,”
Earth Environ. Sci.
,
22
(
3
), p.
032034
.
29.
Müller
,
A.
,
2014
, “
Physical Mechanisms Governing Self-Excited Pressure Oscillations in Francis Turbines
,” Ph.D. thesis,
Ecole Polytechnique Fédérale de Lausanne
,
Lausanne, Switzerland
.
30.
Alligné
,
S.
,
Nicolet
,
C.
,
Ruchonnet
,
N.
,
Hasmatuchi
,
V.
,
Maruzewski
,
P.
, and
Avellan
,
F.
,
2009
, “
Numerical Simulation of Nonlinear Self Oscillations of a Full Load Vortex Rope
,” Vol.
2
,
3rd Meeting of the IAHR Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems
,
Brno, Czech Republic
, pp.
325
338
.
You do not currently have access to this content.