The global linear stability, where we assume no homogeneity in either of the spatial directions, of a two-dimensional laminar base flow through a spatially periodic converging–diverging channel is studied at low Reynolds numbers. A large wall-waviness amplitude is used to achieve instability at critical Reynolds numbers below ten. This is in contrast to earlier studies, which were at lower wall-waviness amplitude and had critical Reynolds numbers an order of magnitude higher. Moreover, our leading mode is a symmetry-breaking standing mode, unlike the traveling modes which are standard at higher Reynolds numbers. Eigenvalues in the spectrum lie on distinct branches, showing varied structure spanning the geometry. Our global stability study suggests that such modes can be tailored to give enhanced mixing in microchannels at low Reynolds numbers.

References

1.
McAlpine
,
A.
, and
Drazin
,
P. G.
,
1998
, “
On the Spatio-Temporal Development of Small Perturbations of Jeffery–Hamel Flows
,”
Fluid Dyn. Res.
,
22
(3), pp.
123
138
.
2.
Swaminathan
,
G.
,
Sameen
,
A.
,
Sahu
,
K. C.
, and
Govindarajan
,
R.
,
2011
, “
Global Instabilities in Diverging Channel Flows
,”
Theor. Computat. Fluid Dyn.
,
25
, pp.
53
64
.
3.
Vinod
,
N.
, and
Govindarajan
,
R.
,
2012
, “
Secondary Instabilities in Incompressible Axisymmetric Boundary Layers: Effect of Transverse Curvature
,”
ASME J. Fluid Eng.
,
134
(
2
), p.
024503
.
4.
Peixinho
,
J.
, and
Besnard
,
H.
,
2013
, “
Transition to Turbulence in Slowly Divergent Pipe Flow
,”
Phys. Fluids
,
25
(11), p.
111702
.
5.
Deka
,
R. K.
, and
Paul
,
A.
,
2013
, “
Stability of Dean Flow Between Two Porous Concentric Cylinders With Radial Flow and a Constant Heat Flux at the Inner Cylinder
,”
ASME J. Fluid Eng.
,
135
(
4
), p.
041203
.
6.
Duryodhan
,
V.
,
Singh
,
S.
, and
Agarwal
,
A.
,
2013
, “
Liquid Flow Through a Diverging Microchannel
,”
Microfluid. Nanofluid.
,
14
(1), pp.
53
67
.
7.
Tripathi
,
S.
,
Prabhakar
,
A.
,
Kumar
,
N.
,
Singh
,
S. G.
, and
Agrawal
,
A.
,
2013
, “
Blood Plasma Separation in Elevated Dimension T-Shaped Microchannel
,”
Biomed. Microdevices
,
15
(
3
), pp.
415
425
.
8.
Sobey
,
I. J.
,
1980
, “
On Flow Through Furrowed Channels—Part 1: Calculated Flow Patterns
,”
J. Fluid Mech.
,
96
(
1
), pp.
1
26
.
9.
Stephanoff
,
K. D.
,
Sobey
,
I. J.
, and
Bellhouse
,
B. J.
,
1980
, “
On Flow Through Furrowed Channels—Part 2: Observed Flow Patterns
,”
J. Fluid Mech.
,
96
(
1
), pp.
27
32
.
10.
Nishimura
,
T.
,
Ohori
,
Y.
, and
Kawamura
,
Y.
,
1984
, “
Flow Characteristics in a Channel With Symmetric Wavy Wall for Steady Flow
,”
J. Chem. Eng. Jpn.
,
17
(
5
), pp.
466
471
.
11.
Blancher
,
S.
,
Creff
,
R.
,
Batina
,
J.
, and
Andre
,
P.
,
1994
, “
Hydrodynamic Stability in Periodic Geometry
,”
Finite Elem. Anal. Des.
,
16
(3–4), pp.
261
270
.
12.
Cho
,
K. J.
,
Kim
,
M.
, and
Shin
,
H. D.
,
1998
, “
Linear Stability of Two-Dimensional Steady Flow in Wavy-Walled Channels
,”
Fluid Dyn. Res.
,
23
(6), pp.
349
370
.
13.
Rush
,
T. A.
,
Newell
,
T. A.
, and
Jacobi
,
A. M.
,
1999
, “
An Experimental Study of Flow and Heat Transfer in Sinusoidal Wavy Passages
,”
Int. J. Heat Mass Transfer
,
42
(9), pp.
1541
–1553.
14.
Selvarajan
,
S.
,
Tulapurkara
,
E. G.
, and
Ram
,
V. V.
,
1999
, “
Stability Characteristics of Wavy Walled Channel Flows
,”
Phys. Fluids
,
11
(
3
), pp.
579
589
.
15.
Stone
,
K.
, and
Vanka
,
S.
,
1999
, “
Numerical Study of Developing Flow and Heat Transfer in a Wavy Passage
,”
ASME J. Fluid Eng.
,
121
(4), pp.
713
720
.
16.
Floryan
,
J. M.
,
2003
, “
Vortex Instability in a Diverging-Converging Channel
,”
J. Fluid Mech.
,
482
, pp.
17
50
.
17.
Eagles
,
P. M.
,
1966
, “
The Stability of a Family of Jeffery–Hamel Solutions for Divergent Channel Flow
,”
J. Fluid Mech.
,
24
(
part 1
), pp.
191
207
.
18.
Sahu
,
K. C.
, and
Govindarajan
,
R.
,
2005
, “
Stability of Flow Through a Slowly Diverging Pipe
,”
J. Fluid Mech.
,
531
, pp.
325
334
.
19.
Blancher
,
S.
, and
Creff
,
R.
,
2004
, “
Analysis of Convective Hydrodynamics Instabilities in a Symmetric Wavy Channel
,”
Phys. Fluids
,
16
(
10
), pp.
3726
3737
.
20.
Kim
,
S. K.
,
2001
, “
An Experimental Study of Flow in a Wavy Channel by Piv
,”
Sixth Asian Symposium on Visualization
, Pusan, Korea, pp.
349
370
.
21.
Guzman
,
A. M.
, and
Amon
,
C. H.
,
1994
, “
Transition to Chaos in Converging–Diverging Channel Flows: Ruelle–Takens–Newhouse Scenario
,”
Phys. Fluids
,
6
(
6
), pp.
1994
2002
.
22.
Cabal
,
A.
,
Szumbarski
,
J.
, and
Floryan
,
J. M.
,
2002
, “
Stability of Flow in a Wavy Channel
,”
J. Fluid Mech.
,
457
, pp.
191
212
.
23.
Floryan
,
J. M.
,
2005
, “
Two-Dimensional Instability of Flow in a Rough Channel
,”
Phys. Fluids
,
17
(4), p.
044101
.
24.
Floryan
,
J. M.
,
2007
, “
Three-Dimensional Instabilities of Laminar Flow in a Rough Channel and the Concept of Hydraulically Smooth Wall
,”
Eur. J. Mech. B/Fluids
,
26
(
3
), pp.
305
329
.
25.
Floryan
,
J. M.
, and
Floryan
,
C.
,
2010
, “
Traveling Wave Instability in a Diverging-Converging Channel
,”
Fluid Dyn. Res.
,
42
(
2
), p.
025509
.
26.
Floryan
,
J.
, and
Asai
,
M.
,
2011
, “
On the Transition Between Distributed and Isolated Surface Roughness and Its Effect on the Stability of the Channel Flow
,”
Phys. Fluids
,
23
(10), p.
104101
.
27.
Szumbarski
,
J.
, and
Floryan
,
J. M.
,
2006
, “
Transient Disturbance Growth in a Corrugated Channel
,”
J. Fluid Mech.
,
568
, pp.
243
272
.
28.
Laval
,
J.-P.
, and
Marquillie
,
M.
,
2011
, “
Direct Numerical Simulations of Converging-Diverging Channel Flow
,”
Prog. Wall Turbul.: Understanding Model., ERCOFTAC Series
,
14
, pp.
203
209
.
29.
Akbari
,
M.
,
Sinton
,
D.
, and
Bahrami
,
M.
,
2011
, “
Viscous Flow in Variable Cross-Section Microchannels of Arbitary Shapes
,”
Int. J. Heat Mass Transfer
, 54(17–18), pp.
3970
3978
.
30.
Jose
,
B. M.
, and
Cubaud
,
T.
,
2012
, “
Droplet Arrangement and Coalescence in Diverging/Converging Microchannels
,”
Microfluid. Nanofluid.
,
12
(4), pp.
687
696
.
31.
Sahu
,
K. S.
,
2011
, “
The Instability of Flow Through a Slowly Diverging Pipe With Viscous Heating
,”
ASME J. Fluid Eng.
,
133
(7), p.
071201
.
32.
Drazin
,
P. G.
, and
Reid
,
W. H.
,
1981
,
Hydrodynamic Stability
,
Cambridge University
,
Cambridge, UK
.
33.
Theofilis
,
V.
,
Duck
,
P. W.
, and
Owen
,
J.
,
2004
, “
Viscous Linear Stability Analysis of Rectangular Duct and Cavity Flows
,”
J. Fluid Mech.
,
505
, pp.
249
286
.
34.
Venkatesh
,
T. N.
,
Sarasamma
,
V. R.
,
Rajalakshmy
,
S.
,
Sahu
,
K. C.
, and
Govindarajan
,
R.
,
2005
, “
Super-Linear Speedup of a Parallel Multigrid Navier–Stokes Solver on Flosolver
,”
Curr. Sci.
,
88
(
4
), pp.
589
593
.
35.
Alleborn
,
N.
,
Nandakumar
,
K.
,
Raszillier
,
H.
, and
Durst
,
F.
,
1997
, “
Further Contributions on the Two-Dimensional Flow in a Sudden-Expansion Flow
,”
J. Fluid Mech.
,
330
, pp.
169
188
.
36.
Lanzerstorfer
,
D.
, and
Kuhlmann
,
H. C.
,
2012
, “
Global Stability of Multiple Solutions in Plane Sudden-Expansion Flow
,”
J. Fluid Mech.
,
702
, pp.
378
402
.
37.
Theofilis
,
V.
,
2003
, “
Advances in Global Linear Instability Analysis of Non-Parallel and Three-Dimensional Flows
,”
Progr. Aerosp. Sci.
,
39
(4), pp.
249
315
.
38.
Theofilis
,
V.
,
Sherwin
,
S. J.
, and
Abdessemed
,
N.
,
2004
, “
On Global Instabilities of Separated Bubble Flows and Their Control in External and Internal Aerodynamic Applications
,” Report No. NATO RTO-AVT-111, p.
21
.
39.
Theofilis
,
V.
,
Federov
,
A.
,
Obrist
,
D.
, and
Dallmann
,
U. C.
,
2003
, “
The Extended Gortler–Hammerlin Model for Linear Instability of Three-Dimensional Incompressible Swept Attachment-Line Boundary Layer Flow
,”
J. Fluid Mech.
,
487
, pp.
271
313
.
40.
Ehrenstein
,
U.
, and
Gallaire
,
F.
,
2005
, “
On Two-Dimensional Temporal Modes in Spatially Evolving Open Flows: The Flat-Plate Boundary Layer
,”
J. Fluid Mech.
,
536
, pp.
209
218
.
41.
Akervik
,
E.
,
Ehrenstein
,
U.
,
Gallaire
,
F.
, and
Henningson
,
D. S.
,
2008
, “
Global Two-Dimensional Stability Measures of the Flat Plate Boundary-Layer Flow
,”
Eur. J. Mech. B/Fluids
,
27
(5), pp.
501
513
.
42.
Chedevergne
,
F.
,
Casalis
,
G.
, and
Feraille
,
T.
,
2006
, “
Biglobal Linear Stability Analysis of the Flow Induced by Wall Injection
,”
Phys. Fluids
,
18
(1), p.
014103
.
43.
Tatsumi
,
T.
, and
Yoshimura
,
T.
,
1990
, “
Stability of the Laminar Flow in a Rectangular Duct
,”
J. Fluid Mech.
,
212
, pp.
437
449
.
You do not currently have access to this content.