The effect of reducing submergence depth at a low and moderate Reynolds number flow is investigated using large eddy simulation (LES) around a matrix of cubes. The submerged body is modeled using an immersed boundary method, while the free-surface is accounted for using a moving mesh. Results show that for reducing the submergence depth, the forces acting on the cube reduce as the force variation increased. Variation in depth is also found to influence the level of damping and redistribution of turbulence near the free-surface boundary. Both submergence depth and Reynolds number are also found to influence the dominant free-surface signature and shedding frequencies from the cube. In the interobstacle region (IOR), the variation of Reynolds number and submergence depth is found to have little effect.

References

1.
Shen
,
Z.
,
Wang
,
B.
,
Cui
,
G.
, and
Zhang
,
Z.
,
2015
, “
Flow Pattern and Pollutant Dispersion Over Three Dimensional Building Arrays
,”
Atmos. Environ.
,
116
, pp.
202
215
.
2.
Huang
,
C. J.
, and
Dong
,
C. M.
,
2001
, “
On the Interaction of a Solitary Wave and a Submerged Dike
,”
Coastal Eng.
,
43
(
3–4
), pp.
265
286
.
3.
Hussein
,
H. J.
, and
Martinuzzi
,
R. J.
,
1996
, “
Energy Balance for Turbulent Flow Around a Surface Mounted Cube Placed in a Channel
,”
Phys. Fluids
,
8
(
3
), pp.
764
780
.
4.
Shah
,
K. B.
, and
Ferziger
,
J. H.
,
1997
, “
A Fluid Mechanicians View of Wind Engineering: Large Eddy Simulation of Flow Past a Cubic Obstacle
,”
J. Wind Eng. Ind. Aerodyn.
,
67–68
, pp.
211
224
.
5.
Martinuzzi
,
R. J.
, and
Havel
,
B.
,
2004
, “
Vortex Shedding From Two Surface-Mounted Cubes in Tandem
,”
Int. J. Heat Fluid Flow
,
25
(
3
), pp.
364
372
.
6.
Pinarbasi
,
A.
,
Pinar
,
E.
,
Akilli
,
H.
, and
Ince
,
E.
,
2015
, “
Shallow Water Experiments of Flow Past Two Identical Square Cylinders in Tandem
,”
Eur. J. Mech.-B/Fluids
,
49
, pp.
100
107
.
7.
Meinders
,
E. R.
, and
Hanjalic
,
K.
,
1999
, “
Vortex Structure and Heat Transfer in Turbulent Flow Over a Wall-Mounted Matrix of Cubes
,”
Int. J. Heat Fluid Flow
,
20
(
3
), pp.
255
267
.
8.
Niceno
,
B.
,
Dronkers
,
A. D. T.
, and
Hanjalic
,
K.
,
2002
, “
Turbulent Heat Transfer From a Multi-Layered Wall-Mounted Cube Matrix: A Large Eddy Simulation
,”
Int. J. Heat Fluid Flow
,
23
(
2
), pp.
173
185
.
9.
Martinuzzi
,
R.
, and
Tropea
,
C.
,
1993
, “
Flow Around Surface-Mounted, Prismatic Obstacles Placed in a Fully Developed Channel Flow
,”
ASME J. Fluids Eng.
,
115
(
1
), pp.
85
92
.
10.
Thomas
,
T. G.
, and
Williams
,
J. J. R.
,
1999
, “
Simulation of Skewed Turbulent Flow Past a Surface Mounted Cube
,”
J. Wind Eng. Ind. Aerodyn.
,
81
(
1–4
), pp.
347
360
.
11.
Xie
,
Z.
, and
Castro
,
I. P.
,
2006
, “
LES and RANS for Turbulent Flow Over Arrays of Wall-Mounted Obstacles
,”
Flow, Turbul. Combust.
,
76
(
3
), pp.
291
312
.
12.
Okamoto
,
S.
,
Tsunoda
,
K.
,
Katsumata
,
T.
,
Abe
,
N.
, and
Kijima
,
M.
,
1996
, “
Turbulent Near-Wakes of Periodic Array of Square Blocks on a Plate
,”
Int. J. Heat Fluid Flow
,
17
(
3
), pp.
211
218
.
13.
Williams
,
J. J. R.
,
2005
, “
Curvilinear Turbulence Modeling of Open Channel Flow
,”
J. Hydraul. Res.
,
43
(
2
), pp.
158
164
.
14.
Ikram
,
Z.
,
Avital
,
E. J.
, and
Williams
,
J. J. R.
,
2012
, “
Detached Eddy Simulation of Free-Surface Flow Around a Submerged Submarine Fairwater
,”
ASME J. Fluids Eng.
,
134
(
6
), p.
061103
.
15.
Jasak
,
H.
,
Weller
,
H. G.
, and
Gosman
,
A. D.
,
1999
, “
High Resolution NVD Differencing Scheme for Arbitrarily Unstructured Meshes
,”
Int. J. Numer. Methods Fluids
,
31
(
2
), pp.
431
449
.
16.
Bensow
,
R. E.
,
Persson
,
T.
,
Fureby
,
C.
,
Svennberg
,
U.
, and
Alin
,
N.
,
2004
, “
Large Eddy Simulation of the Viscous Flow Around Submarine Hulls
,”
25th Symposium on Naval Hydrodynamics
,
St. John's, NL, Canada
, Aug. 8–13, pp.
1
16
.
17.
Le
,
H.
, and
Moin
,
P.
,
1991
, “
An Improvement of Fractional Step Methods for the Incompressible Navier–Stokes Equations
,”
J. Comput. Phys.
,
92
(
2
), pp.
369
379
.
18.
Thomas
,
T. G.
,
Leslie
,
D. C.
, and
Williams
,
J. J. R.
,
1995
, “
Free-Surface Simulations Using a Conservative 3D Code
,”
J. Comput. Phys.
,
116
(
1
), pp.
52
68
.
19.
Chan
,
R. K.-C.
, and
Street
,
R. L.
,
1970
, “
A Computer Study of Finite-Amplitude Water Waves
,”
J. Comput. Phys.
,
6
(
1
), pp.
68
94
.
20.
Apsley
,
D.
, and
Hu
,
W.
,
2003
, “
CFD Simulation of Two- and Three-Dimensional Free-Surface Flow
,”
Int. J. Numer. Methods Fluids
,
42
(
5
), pp.
465
491
.
21.
Yang
,
C.
, and
Lohner
,
R.
,
2003
, “
Prediction of Flows Over an Axisymmetric Body With Appendages
,”
8th International Conference on Numerical Ship Hydrodynamics
,
Busan, Korea
, Sept. 22–25, pp.
1
15
.
22.
Shi
,
J.
,
Thomas
,
T. G.
, and
Williams
,
J. J. R.
,
2000
, “
Free-Surface Effects in Open Channel Flow at Moderate Froude and Reynold's Numbers
,”
J. Hydraul. Res.
,
38
(
6
), pp.
465
474
.
23.
Werner
,
H.
, and
Wengle
,
H.
,
1991
, “
Large-Eddy Simulation of Turbulent Flow Over and Around a Cube in a Plate Channel
,”
8th International Symposium on Turbulent Shear Flows
,
Munich, Germany
, Sept. 9–11, pp.
155
168
.
24.
Tseng
,
Y. H.
, and
Ferziger
,
J. H.
,
2003
, “
A Ghost-Cell Immersed Boundary Method for Flow in Complex Geometry
,”
J. Comput. Phys.
,
192
(
2
), pp.
593
623
.
25.
Majumdar
,
S.
,
Iaccarino
,
G.
, and
Durbin
,
P.
,
2001
, “
RANS Solvers With Adaptive Structured Boundary Non-Conforming Grids
,”
Annual Research Briefs 2001
,
Stanford, CA
, pp.
353
366
.
26.
Schmidt
,
S.
, and
Thiele
,
F.
,
2002
, “
Comparison of Numerical Methods Applied to the Flow Over Wall-Mounted Cubes
,”
Int. J. Heat Fluid Flow
,
23
(
3
), pp.
330
339
.
27.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,”
Summer Program 1988
, Center for Turbulence Research,
Stanford, CA
, pp.
193
208
.
You do not currently have access to this content.