This study describes the dynamic behaviors of droplet formation in microfluidic cross-junction devices (MFCDs) based on a two-dimensional numerical model using the volume of fluid (VOF) method. The effects of the junction angle (ϕ = 30 to 90 deg) between the main and side channels and the viscosity ratios (β = 10−5 to 2.0) are considered. The numerical results indicate that the active area for droplet formation in the alternating digitized pattern formation (ADPF) generally increases with the decrease of ϕ at the same water fraction (wf). A junction angle of around 60 deg was predicted as the most efficient angle at which alternating droplets are still formed at lower capillary numbers (Ca). In addition, the droplet size in ADPF decreases as ϕ increases with the same flow conditions. When ϕ is less than 90 deg and prior to approaching the equilibrium state, there always exists a periodic deviation in the relative distance between droplets. The frequency of droplet generation in ADPF decreases as ϕ decreases, and it decreases more quickly when ϕ is less than 60 deg. In addition, the throughput of MFCDs can be controlled effectively as a function of ϕ, wf, and Ca. The droplet formation in MFCDs depends significantly on the viscosity ratio β, and the ADPF becomes a jetting formation (JF) when β is greater than unity. Furthermore, the droplet size in ADPF decreases with the increase of β. The understanding of droplet formation in MFCDs is very useful for many applications, such as nanoparticle synthesis with different concentrations, hydrogel bead generation, or cell transplantation in biomedical therapy.

References

1.
Dendukuri
,
D.
,
Pregibon
,
D. C.
,
Collins
,
J.
,
Hatton
,
T. A.
, and
Doyle
,
P. S.
,
2006
, “
Continuous-Flow Lithography for High-Throughput Microparticle Synthesis
,”
Nat. Mater.
,
5
(
5
), pp.
365
369
.
2.
Nie
,
Z. H.
,
Li
,
W.
,
Seo
,
M.
,
Xu
,
S. Q.
, and
Kumacheva
,
E.
,
2006
, “
Janus and Ternary Particles Generated by Microfluidic Synthesis: Design, Synthesis, and Self-Assembly
,”
J. Am. Chem. Soc.
,
128
(
29
), pp.
9408
9412
.
3.
Nisisako
,
T.
,
Torii
,
T.
, and
Higuchi
,
T.
,
2004
, “
Novel Microreactors for Functional Polymer Beads
,”
Chem. Eng. J.
,
101
(
1–3
), pp.
23
29
.
4.
Serra
,
C. A.
, and
Chang
,
Z. Q.
,
2008
, “
Microfluidic-Assisted Synthesis of Polymer Particles
,”
Chem. Eng. Technol.
,
31
(
8
), pp.
1099
1115
.
5.
Mohammadi
,
M.
, and
Sharp
,
K. V.
,
2013
, “
Experimental Techniques for Bubble Dynamics Analysis in Microchannels: A Review
,”
ASME J. Fluids Eng.
,
135
(
2
), p.
021202
.
6.
Whitesides
,
G. M.
,
2006
, “
The Origins and the Future of Microfluidics
,”
Nature
,
442
(
7101
), pp.
368
373
.
7.
Engl
,
W.
,
Backov
,
R.
, and
Panizza
,
P.
,
2008
, “
Controlled Production of Emulsions and Particles by Milli- and Microfluidic Techniques
,”
Curr. Opin. Colloid Interface
,
13
(
4
), pp.
206
216
.
8.
Thorsen
,
T.
,
Roberts
,
R. W.
,
Arnold
,
F. H.
, and
Quake
,
S. R.
,
2001
, “
Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device
,”
Phys. Rev. Lett.
,
86
(
18
), pp.
4163
4166
.
9.
Hao
,
G.
,
Duits
,
M. H. G.
, and
Mugele
,
F.
,
2011
, “
Droplets Formation and Merging in Two-Phase Flow Microfluidics
,”
Int. J. Mol. Sci.
,
12
(
4
), pp.
2572
2597
.
10.
Teh
,
S. Y.
,
Lin
,
R.
,
Hung
,
L. H.
, and
Lee
,
A. P.
,
2008
, “
Droplet Microfluidics
,”
Lab Chip
,
8
(
2
), pp.
198
220
.
11.
Dang
,
T. D.
,
Kim
,
Y. H.
,
Kim
,
H. G.
, and
Kim
,
G. M.
,
2012
, “
Preparation of Monodisperse PEG Hydrogel Microparticles Using a Microfluidic Flow-Focusing Device
,”
J. Ind. Eng. Chem.
,
18
(
4
), pp.
1308
1313
.
12.
Dang
,
T. D.
, and
Joo
,
S. W.
,
2013
, “
Preparation of Tadpole-Shaped Calcium Alginate Microparticles With Sphericity Control
,”
Colloid Surf. B
,
102
, pp.
766
771
.
13.
Zheng
,
B.
,
Tice
,
J. D.
, and
Ismagilov
,
R. F.
,
2004
, “
Formation of Droplets of Alternating Composition in Microfluidic Channels Alternating Composition and Applications to Indexing of Concentrations in Droplet-Based Assays
,”
Anal. Chem.
,
76
(
17
), pp.
4977
4982
.
14.
Jin
,
B. J.
,
Kim
,
Y. W.
,
Lee
,
Y.
, and
Yoo
,
J. Y.
,
2010
, “
Droplet Merging in a Straight Microchannel Using Droplet Size or Viscosity Difference
,”
J. Micromech. Microeng.
,
20
(
3
), pp.
1
10
.
15.
Fidalgo
,
L. M.
,
Abell
,
C.
, and
Huck
,
W. T. S.
,
2007
, “
Surface-Induced Droplet Fusion in Microfluidic Devices
,”
Lab Chip
,
7
(
8
), pp.
984
986
.
16.
Tang
,
S. K. Y.
,
Li
,
Z. Y.
,
Abate
,
A. R.
,
Agresti
,
J. J.
,
Weitz
,
D. A.
,
Psaltis
,
D.
, and
Whitesides
,
G. M.
,
2009
, “
A Multi-Color Fast-Switching Microfluidic Droplet Dye Laser
,”
Lab Chip
,
9
(
19
), pp.
2767
2771
.
17.
Hung
,
L. H.
,
Choi
,
K. M.
,
Tseng
,
W. Y.
,
Tan
,
Y. C.
,
Shea
,
K. J.
, and
Lee
,
A. P.
,
2006
, “
Alternating Droplet Generation and Controlled Dynamic Droplet Fusion in Microfluidic Device for CdS Nanoparticle Synthesis
,”
Lab Chip
,
6
(
2
), pp.
174
178
.
18.
Jin
,
B. J.
, and
Yoo
,
J. Y.
,
2012
, “
Visualization of Droplet Merging in Microchannels Using Micro-PIV
,”
Exp. Fluids
,
52
(
1
), pp.
235
245
.
19.
Glatzel
,
T.
,
Litterst
,
C.
,
Cupelli
,
C.
,
Lindemann
,
T.
,
Moosmann
,
C.
,
Niekrawietz
,
R.
,
Streule
,
W.
,
Zengerle
,
R.
, and
Koltay
,
P.
,
2008
, “
Computational Fluid Dynamics (CFD) Software Tools for Microfluidic Applications—A Case Study
,”
Comput. Fluids
,
37
(
3
), pp.
218
235
.
20.
Bedram
,
A.
,
Darabi
,
A. E.
,
Moosavi
,
A.
, and
Hannani
,
S. K.
,
2014
, “
Numerical Investigation of an Efficient Method (T-Junction With Valve) for Producing Unequal-Sized Droplets in Micro- and Nano-Fluidic Systems
,”
ASME J. Fluids Eng.
,
137
(
3
), p.
031202
.
21.
Sharma
,
A.
,
Tiwari
,
V.
,
Kumar
,
V.
,
Mandal
,
T. K.
, and
Bandyopadhyay
,
D.
,
2014
, “
Localized Electric Field Induced Transition and Miniaturization of Two-Phase Flow Patterns Inside Microchannels
,”
Electrophoresis
,
35
(
20
), pp.
2930
2937
.
22.
De Menech
,
M.
,
2006
, “
Modeling of Droplet Breakup in a Microfluidic T-Shaped Junction With a Phase-Field Model
,”
Phys. Rev. E
,
73
(
3
), pp.
1
9
.
23.
De Menech
,
M.
,
Garstecki
,
P.
,
Jousse
,
F.
, and
Stone
,
H. A.
,
2008
, “
Transition From Squeezing to Dripping in a Microfluidic T-Shaped Junction
,”
J. Fluid Mech.
,
595
, pp.
141
161
.
24.
Hoang
,
D. A.
,
van Steijn
,
V.
,
Portela
,
L. M.
,
Kreutzer
,
M. T.
, and
Kleijn
,
C. R.
,
2013
, “
Benchmark Numerical Simulations of Segmented Two-Phase Flows in Microchannels Using the Volume of Fluid Method
,”
Comput. Fluids
,
86
, pp.
28
36
.
25.
Timung
,
S.
,
Tiwari
,
V.
,
Singh
,
A. K.
,
Mandal
,
T. K.
, and
Bandyopadhyay
,
D.
,
2015
, “
Capillary Force Mediated Flow Patterns and Non-Monotonic Pressure Drop Characteristics of Oil–Water Microflows
,”
Can. J. Chem. Eng.
,
93
(
10
), pp.
1736
1743
.
26.
Bashir
,
S.
,
Rees
,
J. M.
, and
Zimmerman
,
W. B.
,
2011
, “
Simulations of Microfluidic Droplet Formation Using the Two-Phase Level Set Method
,”
Chem. Eng. Sci.
,
66
(
20
), pp.
4733
4741
.
27.
Hua
,
H.
,
Shin
,
J.
, and
Kim
,
J.
,
2013
, “
Level Set, Phase-Field, and Immersed Boundary Methods for Two-Phase Fluid Flows
,”
ASME J. Fluids Eng.
,
136
(
2
), p.
021301
.
28.
Sharma
,
A.
,
Chaudhuri
,
J.
,
Kumar
,
V.
,
Timung
,
S.
,
Mandal
,
T. K.
, and
Bandyopadhyay
,
D.
,
2015
, “
Digitization of Two-Phase Flow Patterns in a Microchannel Induced by an External AC Field
,”
RSC Adv.
,
5
(
37
), pp.
29545
29551
.
29.
Liu
,
H. H.
, and
Zhang
,
Y. H.
,
2011
, “
Droplet Formation in Microfluidic Cross-Junctions
,”
Phys. Fluids
,
23
(
8
), pp.
1
12
.
30.
Dupin
,
M. M.
,
Halliday
,
I.
, and
Care
,
C. M.
,
2006
, “
Simulation of a Microfluidic Flow-Focusing Device
,”
Phys. Rev. E
,
73
(
5
), pp.
1
4
.
31.
Kim
,
L. S.
,
Jeong
,
H. K.
,
Ha
,
M. Y.
, and
Kim
,
K. C.
,
2008
, “
Numerical Simulation of Droplet Formation in a Micro-Channel Using the Lattice Boltzmann Method
,”
J. Mech. Sci. Technol.
,
22
(
4
), pp.
770
779
.
32.
Gupta
,
A.
,
Matharoo
,
H. S.
,
Makkar
,
D.
, and
Kumar
,
R.
,
2014
, “
Droplet Formation Via Squeezing Mechanism in a Microfluidic Flow-Focusing Device
,”
Comput. Fluids
,
100
, pp.
218
226
.
33.
Nagel
,
M.
, and
Gallaire
,
F.
,
2015
, “
Boundary Elements Method for Microfluidic Two-Phase Flows in Shallow Channels
,”
Comput. Fluids
,
107
, pp.
272
284
.
34.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.
35.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.
36.
ANSYS FLUENT
,
2011
,
ANSYS FLUENT Therory Guide
,
ANSYS
, Inc., www.ansys.com.
37.
Gupta
,
R.
,
Fletcher
,
D. F.
, and
Haynes
,
B. S.
,
2009
, “
On the CFD Modelling of Taylor Flow in Microchannels
,”
Chem. Eng. Sci.
,
64
(
12
), pp.
2941
2950
.
38.
Ngo
,
I.-L.
,
Dang
,
T.-D.
,
Byon
,
C.
, and
Joo
,
S. W.
,
2015
, “
A Numerical Study on the Dynamics of Droplet Formation in a Microfluidic Double T-Junction
,”
Biomicrofluidics
,
9
(
2
), p.
024107
.
39.
Kashid
,
M. N.
,
Renken
,
A.
, and
Kiwi-Minsker
,
L.
,
2010
, “
CFD Modelling of Liquid–Liquid Multiphase Microstructured Reactor: Slug Flow Generation
,”
Chem. Eng. Res. Des.
,
88
(
3A
), pp.
362
368
.
40.
Raj
,
R.
,
Mathur
,
N.
, and
Buwa
,
V. V.
,
2010
, “
Numerical Simulations of Liquid−Liquid Flows in Microchannels
,”
Ind. Eng. Chem. Res.
,
49
(
21
), pp.
10606
10614
.
You do not currently have access to this content.