An accurate prediction of the performance characteristics of cavitating cryogenic turbopump inducers is essential for an increased reliance on numerical simulations in the early turbopump design stages of liquid rocket engines (LRE). This work focuses on the sensitivities related to the choice of turbulence models on the cavitation prediction in flow setups relevant to cryogenic turbopump inducers. To isolate the influence of the turbulence closure models for Reynolds-Averaged Navier–Stokes (RANS) equations, four canonical problems are abstracted and studied individually to separately consider cavitation occurring in flows with a bluff body pressure drop, adverse pressure gradient, blade passage contraction, and rotation. The choice of turbulence model plays a significant role in the prediction of the phase distribution in the flow. It was found that the sensitivity to the closure model depends on the choice of cavitation model itself; the barotropic equation of state (BES) cavitation models are far more sensitive to the turbulence closure than the transport-based models. The sensitivity of the turbulence model is also strongly dependent on the type of flow. For bounded cavitation flows (blade passage), stark variations in the cavitation topology are observed based on the selection of the turbulence model. For unbounded problems, the spread in the results due to the choice of turbulence models is similar to noncavitating, single-phase flow cases.

References

1.
Sutton
,
G.
, and
Bilbarz
,
O.
,
2010
,
Rocket Propulsion Elements
, 7th ed.,
Wiley
,
New York
.
2.
Wu
,
Y.
,
Li
,
S.
,
Liu
,
S.
,
Dou
,
H.-S.
, and
Qian
,
Z.
,
2013
,
Vibration of Hydraulic Machinery
,
Springer
,
Heidelberg, Germany
.
3.
Brennen
,
C. E.
,
2013
, “
A Review of the Dynamics of Cavitating Pumps
,”
ASME J. Fluids Eng.
,
135
(
6
), p.
061301
.
4.
Pace
,
G.
,
Valentini
,
D.
,
Pasini
,
A.
,
Torre
,
L.
,
Fu
,
Y.
, and
d'Agostino
,
L.
,
2015
, “
Geometry Effects on Flow Instabilities of Different Three-Bladed Inducers
,”
ASME J. Fluids Eng.
,
137
(
4
), p.
041304
.
5.
Coutier-Delgosha
,
O.
,
Caignaert
,
G.
,
Bois
,
G.
, and
Leroux
,
J.
,
2012
, “
Influence of the Blade Number on Inducer Cavitating Behavior
,”
ASME J. Fluids Eng.
,
134
(
8
), p.
081304
.
6.
Stripling
,
L.
, and
Acosta
,
A.
,
1962
, “
Cavitation in Turbopumps—Part 1
,”
ASME J. Fluids Eng.
,
84
(
3
), pp.
326
338
.
7.
Cervone
,
A.
,
Torre
,
L.
,
Pasini
,
A.
, and
d'Agostino
,
L.
,
2009
, “
Cavitation and Turbopump Hydro-Dynamics Research at Alta Spa and Pisa University
,”
Fluid Machinery and Fluid Mechanics
,
Springer
,
Heidelberg, Germany
, pp.
80
88
.
8.
Cervone
,
A.
,
Testa
,
R.
,
Bramanti
,
C.
,
Rapposelli
,
E.
, and
D'Agostino
,
L.
,
2005
, “
Thermal Effects on Cavitation Instabilities in Helical Inducers
,”
J. Propul. Power
,
21
(
5
), pp.
893
899
.
9.
Torre
,
L.
,
Cervone
,
A.
,
Pasini
,
A.
, and
d'Agostino
,
L.
,
2011
, “
Experimental Characterization of Thermal Cavitation Effects on Space Rocket Axial Inducers
,”
ASME J. Fluids Eng.
,
133
(
11
), p.
111303
.
10.
d'Agostino
,
L.
,
2013
,
Turbomachinery Developments and Cavitation
(VKI Lecture Series on Fluid Dynamics Associated to Launcher Developments),
von Karman Institute of Fluid Dynamics
,
Rhode-Saint-Genese, Belgium
, pp.
15
17
.
11.
Tsujimoto
,
Y.
,
Yoshida
,
Y.
,
Maekawa
,
Y.
,
Watanabe
,
S.
, and
Hashimoto
,
T.
,
1997
, “
Observations of Oscillating Cavitation of an Inducer
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
775
781
.
12.
Kikuta
,
K.
,
Yoshida
,
Y.
,
Watanabe
,
M.
,
Hashimoto
,
T.
,
Nagaura
,
K.
, and
Ohira
,
K.
,
2008
, “
Thermodynamic Effect on Cavitation Performances and Cavitation Instabilities in an Inducer
,”
ASME J. Fluids Eng.
,
130
(
11
), p.
111302
.
13.
Hickel
,
S.
,
2015
, “
DNS and LES of Two-Phase Flows With Cavitation
,”
Direct and Large-Eddy Simulation IX
,
Springer
,
Heidelberg, Germany
.
14.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
15.
Payri
,
R.
,
Tormos
,
B.
,
Gimeno
,
J.
, and
Bracho
,
G.
,
2010
, “
The Potential of Large Eddy Simulation (LES) Code for the Modeling of Flow in Diesel Injectors
,”
Math. Comput. Modelling
,
52
(
7
), pp.
1151
1160
.
16.
Ahuja
,
V.
,
Hosangadi
,
A.
, and
Arunajatesan
,
S.
,
2001
, “
Simulations of Cavitating Flows Using Hybrid Unstructured Meshese
,”
ASME J. Fluids Eng.
,
123
(
2
), pp.
331
340
.
17.
Wang
,
Y.
,
Huang
,
C.
,
Fang
,
X.
,
Yu
,
X.
,
Wu
,
X.
, and
Du
,
T.
,
2015
, “
On the Cloud Cavitating Flow Over a Submerged Axisymmetric Projectile and Comparison Between 2D RANS and 3D LES Methods
,”
ASME J. Fluids Eng.
,
138
(6), p.
061102
.
18.
Goncalves
,
E.
,
2011
, “
Numerical Study of Unsteady Turbulent Cavitating Flows
,”
Eur. J. Mech. B.
,
30
(
1
), pp.
26
40
.
19.
Decaix
,
J.
, and
Goncalvès
,
E.
,
2012
, “
Time-Dependent Simulation of Cavitating Flow With K-l Turbulence Models
,”
Int. J. Numer. Methods Fluids
,
68
(
8
), pp.
1053
1072
.
20.
Decaix
,
J.
,
2012
, “
Modlisation et Simulation de la Turbulence Compressible en Milieu Diphasique: application aux Coulements Cavitants Instationnaire
,” Ph.D thesis, University of Grenoble, Grenoble, France.
21.
Wu
,
J.
,
Utturkar
,
Y.
, and
Shyy
,
W.
,
2003
, “
Assessmentof Modeling Strategies for Cavitating Flow Around a Hydrofoil
,”
Fifth International Symposium on Cavitation
, Osaka, Japan, Nov. 1–4, pp.
1
4
.
22.
Wu
,
J.
,
Wang
,
G.
, and
Shyy
,
W.
,
2005
, “
Time-Dependent Turbulent Cavitating Flow Computations With Interfacial Transport and Filter-Based Models
,”
Int. J. Numer. Methods Fluids
,
49
(
7
), pp.
739
761
.
23.
Mashayek
,
F.
, and
Pandya
,
R.
,
2003
, “
Analytical Description of Particle/Droplet-Laden Turbulent Flows
,”
Prog. Energy Combust. Sci.
,
29
(
4
), pp.
329
378
.
24.
Cokljat
,
D.
,
Slack
,
M.
,
Vasquez
,
S.
, and
Bakker
,
A.
,
2006
, “
Reynolds-Stress Model for Eulerian Multiphase
,”
Progress Comput. Fluid Dyn.
,
6
(
1
), pp.
168
178
.
25.
Beishuizen
,
N.
,
Naud
,
B.
, and
Roekaerts
,
D.
,
2007
, “
Evaluation of a Modified Reynolds Stress Model for Turbulent Dispersed Two-Phase Flows Including Two-Way Coupling
,”
Flow Turbul. Combust.
,
79
(
3
), pp.
321
341
.
26.
Wang
,
J.
,
Wang
,
Y.
,
Liu
,
H.
,
Huang
,
H.
, and
Jiang
,
L.
,
2015
, “
An Improved Turbulence Model for Predicting Unsteady Cavitating Flows in Centrifugal Pump
,”
Int. J. Numer. Methods Heat Fluid Flow
,
25
(
5
), pp.
1198
1213
.
27.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp. 620–631.
28.
Brennen
,
C. E.
,
2005
,
Fundamentals of Multiphase Flow
,
Cambridge University Press
,
Cambridge, UK
.
29.
Goncalvès
,
E.
,
2014
, “
Modeling for Non Isothermal Cavitation Using 4-Equation Models
,”
Int. J. Heat Mass Transfer
,
76
, pp.
247
262
.
30.
Kunz
,
R. F.
,
Boger
,
D. A.
,
Stinebring
,
D. R.
,
Chyczewski
,
T. S.
,
Lindau
,
J. W.
,
Gibeling
,
H. J.
,
Venkateswaran
,
S.
, and
Govindan
,
T.
,
2000
, “
A Preconditioned Navier–Stokes Method for Twophase Flows With Application to Cavitation Prediction
,”
Comp. Fluids
,
29
(
8
), pp.
849
875
.
31.
Senocak
,
I.
, and
Shyy
,
W.
,
2002
, “
A Pressure-Based Method for Turbulent Cavitating Flow Computations
,”
J. Comput. Phys.
,
176
(
2
), pp.
363
383
.
32.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
, Vol.
2
,
DCW Industries
,
La Canada, CA
.
33.
Mani
,
K.
,
2015
, “
Turbulence Modelling of Cavitating Flows in Cryogenic Turbopumps
,” Master's thesis, Delft University of Technology, Delft, The Netherlands.
34.
Rouse
,
H.
, and
McNown
,
J. S.
,
1948
, Cavitation and Pressure Distribution: Head Forms at Zero Angle of Yaw, State University of Iowa, Technical Report No. 420.
35.
Hord
,
J.
,
1973
, “
Cavitation in Liquid Cryogens: Hydrofoil II
,” National Aeronautics and Space Administration, NASA Technical Report No. NASA-CR-2156.
36.
Kim
,
J.
, and
Song
,
S. J.
,
2016
, “
Measurement of Temperature Effects on Cavitation in a Turbopump Inducer
,”
ASME J. Fluids Eng.
,
138
(
1
), p.
011304
.
37.
Sipila
,
T.
,
Sanchez-Caja
,
A.
, and
Siikonen
,
T.
,
2014
, “
Eddy Vorticity in Cavitating Tip Vortices Modelled by Different Turbulence Models Using the RANS Approach
,”
11th World Congress on Computational Mechanics (WCCM XI)
, pp. 4741–4752.
38.
Launder
,
B. E.
, and
Spalding
,
D.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.
39.
Launder
,
B.
, and
Sharma
,
B.
,
1974
, “
Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc
,”
Lett. Heat Mass Transfer
,
1
(
2
), pp.
131
137
.
40.
Yakhot
,
V.
,
Orszag
,
S.
,
Thangam
,
S.
,
Gatski
,
T.
, and
Speziale
,
C.
,
1992
, “
Development of Turbulence Models for Shear Flows by a Double Expansion Technique
,”
Phys. Fluids
,
4
(
7
), pp.
1510
1520
.
41.
Launder
,
B.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds-Stress Turbulence Closure
,”
J. Fluid Mech.
,
68
(
3
), pp.
537
566
.
42.
Charriere
,
B.
,
Decaix
,
J.
, and
Goncalves
,
E.
,
2015
, “
A Comparative Study of Cavitation Models in a Venturi Flow
,”
Eur. J. Mech. B
,
49
(Part A), pp.
287
297
.
43.
Reboud
,
J.
,
Coutier-Delgosha
,
O.
,
Pouffary
,
B.
, and
Fortes-Patella
,
R.
,
2003
, “
Numerical Simulation of Unsteady Cavitation Flows: Some Applications and Open Problems
,”
Fifth International Symposium on Cavitation
, Osaka, Japan, Nov. 1–5.
44.
Utturkar
,
Y.
,
Wu
,
J.
,
Wang
,
G.
, and
Shyy
,
W.
,
2005
, “
Recent Progress in Modeling of Cryogenic Cavitation for Liquid Rocket Propulsion
,”
Prog. Aerosp. Sci.
,
41
(
7
), pp.
558
608
.
45.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.
46.
Jakirlic
,
S.
,
Hanjalic
,
K.
, and
Tropea
,
C.
,
2002
, “
Modeling Rotating and Swirling Turbulent Flows: A Perpetual Challenge
,”
AIAA J.
,
40
(
10
), pp.
1984
1996
.
You do not currently have access to this content.