The drag torque caused by the viscous shear in open multiplate wet clutches has been studied in most available literature whose focus is placed on low circumferential speed. However, the drag torque increases drastically in the high circumferential speed range. The underlying physical principles and the influencing factors of the drag torque at high speed are still indeterminate. The present study aims to experimentally investigate the characteristics of the wobbling vibrations of plates and to characterize the effects of average clearance, flow rate of lubricant, shifting condition, and the number of friction interfaces on the drag torque at high circumferential speed. The result of the experiment reveals that the friction plate (FP) starts to wobble periodically at low circumferential speed, though the effect is insignificant. The dominant frequency of plate wobbling movements increases with the input speed. When wobbling vibrations of plates become unstable, the wobble gradually becomes nonlinear. The experiments confirm that the mechanical contacts between plates during the unstable wobbling vibration result in the drag torque rise at high circumferential speed. At high speed, the supplying flow rate of the lubricant influences the drag torque values. The rotation of separator plates (SPs) brings forward the torque rise and makes the drag torque rise smoother. By reducing the number of interfaces, the drag torque rise is delayed and the magnitude becomes smaller. Finally, a four-stage drag torque characteristic curve is illustrated to show the dominant factors of drag torque at different stages.

References

1.
Naunheimer
,
H.
,
Bertsche
,
B.
,
Ryborz
,
J.
, and
Novak
,
W.
,
2011
, “
Layout and Design of Multi-Plate Clutches
,”
Automotive Transmissions: Fundamentals, Selection, Design and Application
,
Springer-Verlag
,
Berlin
, pp.
363
365
.
2.
Zhou
,
X.
,
Walker
,
P.
,
Zhang
,
N.
,
Zhu
,
B.
, and
Ruan
,
J.
,
2014
, “
Numerical and Experimental Investigation of Drag Torque in a Two-Speed Dual Clutch Transmission
,”
Mech. Mach. Theory
,
79
, pp.
46
63
.
3.
Sun
,
S.
,
Lei
,
Y.
, and
Li
,
X.
,
2014
, “
Simulations of Drag Torque in Multi-Plate Wet Clutch Affecting Synchronizers in a TC+AMT Transmission
,”
SAE
Paper No. 2014-01-1714.
4.
Lu
,
T.
,
Li
,
H.
,
Zhang
,
J.
, and
Hao
,
H.
,
2016
, “
Supervisor Control Strategy of Synchronizer for Wet DCT Based on Online Estimation of Clutch Drag Torque
,”
Mech. Syst. Signal Process.
,
66–67
, pp.
840
861
.
5.
Schade
,
C. W.
,
1971
, “
Effects of Transmission Fluid on Clutch Performance
,”
SAE
Paper No. 710734.
6.
Lloyd
,
F. A.
,
1974
, “
Parameters Contributing to Power Loss in Disengaged Wet Clutches
,”
SAE
Paper No. 740676.
7.
Fish
,
R. L.
,
1991
, “
Using the SAE #2 Machine to Evaluate Wet Clutch Drag Losses
,”
SAE
Paper No. 910803.
8.
Kitabayashi
,
H.
,
Li
,
C. Y.
, and
Hiraki
,
H.
,
2003
, “
Analysis of the Various Factors Affecting Drag Torque in Multiple-Plate Wet Clutches
,”
SAE Trans.
,
112
(
4
), pp.
1840
1845
.
9.
Aphale
,
C. R.
,
Cho
,
J. H.
,
Schultz
,
W. W.
,
Ceccio
,
S. L.
,
Yoshioka
,
T.
, and
Hiraki
,
H.
,
2006
, “
Modeling and Parametric Study of Torque in Open Clutch Plates
,”
ASME J. Tribol.
,
128
(
2
), pp.
422
430
.
10.
Aphale
,
C. R.
,
Schultz
,
W. W.
, and
Ceccio
,
S. L.
,
2010
, “
The Influence of Grooves on the Fully Wetted and Aerated Flow Between Open Clutch Plates
,”
ASME J. Tribol.
,
132
(
1
), p.
011104
.
11.
Yuan
,
Y.
,
Attibele
,
P.
, and
Dong
,
Y.
,
2003
, “
CFD Simulation of the Flows Within Disengaged Wet Clutches of an Automatic Transmission
,”
SAE
Paper No. 2003-01-0320.
12.
Yuan
,
Y.
,
Liu
,
E. A.
,
Hill
,
J.
, and
Zou
,
Q.
,
2007
, “
An Improved Hydrodynamic Model for Open Wet Transmission Clutches
,”
ASME J. Fluids Eng.
,
129
(
3
), pp.
333
337
.
13.
Takagi
,
Y.
,
Nakata
,
H.
,
Okano
,
Y.
,
Miyagawa
,
M.
, and
Katayama
,
N.
,
2011
, “
Effect of Two-Phase Flow on Drag Torque in a Wet Clutch
,”
J. Adv. Res. Phys.
,
2
(
2
), p.
021108
.http://85.122.26.3/jarp/index.php/jarp/article/view/87/48
14.
Yuan
,
S.
,
Guo
,
K.
,
Hu
,
J.
, and
Peng
,
Z.
,
2010
, “
Study on Aeration for Disengaged Wet Clutches Using a Two-Phase Flow Model
,”
ASME J. Fluids Eng.
,
132
(
11
), p.
111304
.
15.
Yuan
,
S.
,
Peng
,
Z.
, and
Jing
,
C.
,
2011
, “
Experimental Research and Mathematical Model of Drag Torque in Single-Plate Wet Clutch
,”
CJME
,
24
(
1
), pp.
91
97
.
16.
Hu
,
J.
,
Peng
,
Z.
, and
Yuan
,
S.
,
2009
, “
Drag Torque Prediction Model for the Wet Clutches
,”
CJME
,
22
(
2
), pp.
238
243
.
17.
Hu
,
J.
,
Peng
,
Z.
, and
Wei
,
C.
,
2012
, “
Experimental Research on Drag Torque for Single-Plate Wet Clutch
,”
ASME J. Tribol.
,
134
(
1
), p.
014502
.
18.
Iqbal
,
S.
,
Al-Bender
,
F.
,
Pluymers
,
B.
, and
Desmet
,
W.
,
2013
, “
Experimental Characterization of Drag Torque in Open Multi-Disks Wet Clutches
,”
SAE Int. J. Fuels Lubr.
,
6
(
3
), pp.
894
906
.
19.
Iqbal
,
S.
,
Al-Bender
,
F.
,
Pluymers
,
B.
, and
Desmet
,
W.
,
2013
, “
Mathematical Model and Experimental Evaluation of Drag Torque in Disengaged Wet Clutches
,”
ISRN Tribol.
,
2013
(
12
), p.
206539
.https://www.hindawi.com/journals/isrn/2013/206539/
20.
Xiong
,
Z.
,
Yuan
,
S.
,
Wu
,
W.
, and
Hu
,
J.
,
2015
, “
Numerical Study of Turbulent Drag Reduction Over Non-Smooth Surfaces of Rotating-Stationary Disk System
,”
International Conference on Fluid Power and Mechatronics
(
FPM
), Harbin, China, Aug. 5–7, pp.
1343
1348
.
21.
Wu
,
W.
,
Xiong
,
Z.
,
Hu
,
J.
, and
Yuan
,
S.
,
2015
, “
Application of CFD to Model Oil–Air Flow in a Grooved Two-Disc System
,”
Int. J. Heat Mass Transfer
,
91
, pp.
293
301
.
22.
Pahlovy
,
S.
,
Mahmud
,
S. F.
,
Kubota
,
M.
,
Ogawa
,
M.
, and
Takakura
,
N.
,
2014
, “
Multiphase Drag Modeling for Prediction of the Drag Torque Characteristics in Disengaged Wet Clutches
,”
SAE Int. J. Commer. Veh.
,
7
(
2
), pp.
441
447
.
23.
Mahmud
,
S. F.
,
Pahlovy
,
S. A.
,
Kubota
,
M.
,
Ogawa
,
M.
, and
Takakura
,
N.
,
2016
, “
Multi-Phase Simulation for Studying the Effect of Different Groove Profiles on the Drag Torque Characteristics of Transmission Wet Clutch
,”
SAE
Paper No. 2016-01-1144.
24.
Mahmud
,
S.
,
Pahlovy
,
S.
,
Kubota
,
M.
,
Ogawa
,
M.
, and
Takakura
,
N.
,
2015
, “
Multi-Phase Simulation for Predicting Better Groove Pattern of the Clutch Disk for Low Drag Torque
,”
SAE
Paper No. 2015-01-1977.
25.
Pahlovy
,
S. A.
,
Mahmud
,
S. F.
,
Kubota
,
M.
,
Ogawa
,
M.
, and
Takakura
,
N.
,
2016
, “
New Development of a Gas Cavitation Model for Evaluation of Drag Torque Characteristics in Disengaged Wet Clutches
,”
SAE Int. J. Engines
,
9
(
3
), pp.
1910
1915
.
26.
Pahlovy
,
S. A.
,
Mahmud
,
S. F.
,
Kubota
,
M.
,
Ogawa
,
M.
, and
Takakura
,
N.
,
2016
, “
Prediction of Drag Torque in a Disengaged Wet Clutch of Automatic Transmission by Analytical Modeling
,”
Tribol. Online
,
11
(
2
), pp.
121
129
.
27.
Singh
,
A.
,
2016
, “
Closed Form Solution for Outflow Between Corotating Disks
,”
ASME J. Fluids Eng.
,
138
(
5
), p.
051203
.
28.
Oerleke
,
C.
,
2000
, “
Einfluss auf die Schleppmomente schnelllaufender Lamellenkupplungen in Automatgetrieben
,” Ph.D. dissertation, Universität der Bundeswehr Hamburg, Hamburg, Germany.
29.
Nie
,
C.
,
2014
, “
Study on Critical Speed of the Plates in High Sped Wet-Clutch
,” Master dissertation, Beijing Institute of Technology, Beijing, China.
30.
Li
,
J.
,
2015
, “
Study on Vibration of Wet-Clutch at High Rotating Speed
,” Master dissertation, Beijing Institute of Technology, Beijing, China.
31.
Peng
,
Z.
,
2016
, “
Study on Fluid-Structure Coupled Vibration and Stability of High Speed Multi-Plates Open Wet Clutches
,” Ph.D. dissertation, Beijing Institute of Technology, Beijing, China.
32.
Wang
,
P.
,
Katopodes
,
N.
, and
Fujii
,
Y.
,
2017
, “
Two-Phase MRF Model for Wet Clutch Drag Simulation
,”
SAE Int. J. Engines
,
10
(
3
), pp.
1327
1337
.
33.
Sawadogo
,
T.
, and
Mureithi
,
N.
,
2014
, “
Fluid-elastic Instability Study in a Rotated Triangular Tube Array Subject to Two-Phase Cross-Flow—Part I: Fluid Force Measurements and Time Delay Extraction
,”
J. Fluids Struct.
,
49
, pp.
1
15
.
34.
Iqbal
,
S.
,
Al-Bender
,
F.
,
Pluymers
,
B.
, and
Desmet
,
W.
,
2013
, “
Model for Predicting Drag Torque in Open Multi-Disks Wet Clutches
,”
ASME J. Fluids Eng.
,
136
(
2
), p.
021103
.
35.
Brunetière
,
N.
,
Tournerie
,
B.
, and
Frêne
,
J.
,
2002
, “
Influence of Fluid Flow Regime on Performances of Non-Contacting Liquid Face Seals
,”
ASME J. Tribol.
,
124
(
3
), pp.
515
523
.
You do not currently have access to this content.