Compared with traditional speed regulation (SR) approaches like variable frequency and hydraulic coupling, magnetorheological clutch (MRC) provides a more superior solution for high-efficiency energy saving SR. However, recent developments have demonstrated that severe heating is an outstanding challenge for MRC, especially in high-power applications. Among commonly used cooling methods, liquid cooling offers a viable alternative for the problem. Aiming at pre-evaluating the cooling efficiency of a liquid-cooled MRC in high-power situations, this study introduces a heat-flow coupling simulation method. In this paper, theoretical basis for the simulation is presented first, which is followed by an illustration of the heat-flow coupling simulation. This paper details the simulation model establishment, finite element meshing (FEM), boundary conditions, and simulation parameters. After the simulations, the results concerning the steady flow field of the internal coolant, along with the steady-state temperature fields of MRC, magnetorheological (MR) fluids and the coolant are presented and discussed. Finally, several heating tests of an MRC prototype under various operation conditions are performed and the results verify the correctness and rationality of the simulation.

References

1.
Meng
,
Q.
,
2015
, “
Effect of Starting Time on Hydro-Viscous Drive Speed Regulating Start
,”
Ind. Lubr. Tribol.
,
67
(
4
), pp.
320
327
.
2.
Grady
,
W. M.
, and
Santoso
,
S.
,
2001
, “
Understanding Power System Hannonics
,”
IEEE Power Eng. Rev.
,
21
(
11
), pp.
8
11
.
3.
Xie
,
F.
,
Hou
,
Y.
, and
Yang
,
P.
,
2011
, “
Drive Characteristics of Viscous Oil Film Considering Temperature Effect
,”
ASME J. Fluids Eng.
,
133
(
4
), p.
044502
.
4.
Li
,
W. H.
, and
Zhang
,
X. Z.
,
2008
, “
The Effect of Friction on Magnetorheological Fluids
,”
Korea-Aust. Rheol. J.
,
20
(
2
), pp.
45
50
.
5.
Sherman
,
S. G.
, and
Wereley
,
N. M.
,
2013
, “
Effect of Particle Size Distribution on Chain Structures in Magnetorheological Fluids
,”
IEEE Trans. Magn.
,
49
(
7
), pp.
3430
3433
.
6.
Rossa
,
C.
,
Jaegy
,
A.
,
Lozada
,
J.
, and
Micaelli
,
A.
,
2014
, “
Design Considerations for Magnetorheological Brakes
,”
IEEE/ASME Trans. Mechatronics
,
19
(
5
), pp.
1669
1680
.
7.
Choi
,
S. B.
,
Li
,
W.
,
Yu
,
M.
,
Du
,
H.
,
Fu
,
J.
, and
Do
,
P. X.
,
2016
, “
State of the Art of Control Schemes for Smart Systems Featuring Magneto-Rheological Materials
,”
Smart Mater. Struct.
,
25
(
4
), p.
043001
.
8.
Li
,
W. H.
,
Du
,
H.
,
Chen
,
G.
,
Yeo
,
S. H.
, and
Guo
,
N.
,
2003
, “
Nonlinear Viscoelastic Properties of MR Fluids Under Large-Amplitude-Oscillatory-Shear
,”
Rheol. Acta
,
42
(
3
), pp.
280
286
.
9.
Spaggiari
,
A.
, and
Dragoni
,
E.
,
2012
, “
Effect of Pressure on the Flow Properties of Magnetorheological Fluids
,”
ASME J. Fluids Eng.
,
134
(
9
), p.
091103
.
10.
Rizzo
,
R.
,
Musolino
,
A.
,
Bucchi
,
F.
,
Forte
,
P.
, and
Frendo
,
F.
,
2014
, “
Magnetic FEM Design and Experimental Validation of an Innovative Fail-Safe Magnetorheological Clutch Excited by Permanent Magnets
,”
IEEE Trans. Energy Convers.
,
29
(
3
), pp.
628
640
.
11.
Rabbani
,
Y.
,
Ashtiani
,
M.
, and
Hashemabadi
,
S. H.
,
2015
, “
An Experimental Study on the Effects of Temperature and Magnetic Field Strength on the Magnetorheological Fluid Stability and MR Effect
,”
Soft Matter
,
11
(
22
), pp.
4453
4460
.
12.
Kavlicoglu
,
B.
,
Gordaninejad
,
F.
,
Evrensel
,
C.
,
Fuchs
,
A.
, and
Korol
,
G.
,
2006
, “
A Semi-Active, High-Torque, Magnetorheological Fluid Limited Slip Differential Clutch
,”
ASME J. Vib. Acoust.
,
128
(
5
), pp.
604
610
.
13.
Yadmellat
,
P.
, and
Kermani
,
M. R.
,
2014
, “
Adaptive Modeling of a Magnetorheological Clutch
,”
IEEE/ASME Trans. Mechatronics
,
19
(
5
), pp.
1716
1723
.
14.
Li
,
W. H.
, and
Du
,
H.
,
2003
, “
Design and Experimental Evaluation of a Magnetorheological Brake
,”
Int. J. Adv. Manuf. Technol.
,
21
(
7
), pp.
508
515
.
15.
Park
,
E. J.
,
da Luz
,
L. F.
, and
Suleman
,
A.
,
2008
, “
Multidisciplinary Design Optimization of an Automotive Magnetorheological Brake Design
,”
Comput. Struct.
,
86
(
3
), pp.
207
216
.
16.
Case
,
D.
,
Taheri
,
B.
, and
Richer
,
E.
,
2013
, “
Design and Characterization of a Small-Scale Magnetorheological Damper for Tremor Suppression
,”
IEEE/ASME Trans. Mechatronics
,
18
(
1
), pp.
96
103
.
17.
Yazid
,
I. I. M.
,
Mazlan
,
S. A.
,
Kikuchi
,
T.
,
Zamzuri
,
H.
, and
Imaduddin
,
F.
,
2014
, “
Design of Magnetorheological Damper With a Combination of Shear and Squeeze Modes
,”
Mater. Des.
,
54
, pp.
87
95
.
18.
Milecki
,
A.
, and
Hauke
,
M.
,
2012
, “
Application of Magnetorheological Fluid in Industrial Shock Absorbers
,”
Mech. Syst. Signal Process.
,
28
, pp.
528
541
.
19.
Hu
,
G.
,
Long
,
M.
,
Yu
,
L.
, and
Li
,
W.
,
2014
, “
Design and Performance Evaluation of a Novel Magnetorheological Valve With a Tunable Resistance Gap
,”
Smart Mater. Struct.
,
23
(
12
), p.
127001
.
20.
Kordonski
,
W. I.
,
Shorey
,
A. B.
, and
Tricard
,
M.
,
2006
, “
Magnetorheological (MR) Jet Finishing Technology
,”
ASME J. Fluids Eng.
,
128
(
1
), pp.
20
26
.
21.
Wang
,
T.
,
Cheng
,
H.
,
Zhang
,
W.
,
Yang
,
H.
, and
Wu
,
W.
,
2016
, “
Restraint of Path Effect on Optical Surface in Magnetorheological Jet Polishing
,”
Appl. Opt.
,
55
(
4
), pp.
935
942
.
22.
Yadmellat
,
P.
, and
Kermani
,
M. R.
,
2016
, “
Adaptive Control of a Hysteretic Magnetorheological Robot Actuator
,”
IEEE/ASME Trans. Mechatronics
,
21
(
3
), pp.
1336
1344
.
23.
Wang
,
D.
, and
Hou
,
Y.
,
2013
, “
Design and Experimental Evaluation of a Multidisk Magnetorheological Fluid Actuator
,”
J. Intell. Mater. Syst. Struct.
,
24
(
5
), pp.
640
650
.
24.
Ma
,
L.
,
Yu
,
L.
,
Song
,
J.
,
Xuan
,
W. W.
, and
Liu
,
X.
,
2015
, “
Design, Testing and Analysis of a Novel Multiple-Disc Magnetorheological Braking Applied in Vehicles
,”
SAE
Technical Paper No. 2015-01-0724.
25.
Yu
,
L.
,
Ma
,
L.
,
Song
,
J.
, and
Liu
,
X.
,
2016
, “
Magneto-Rheological and Wedge Mechanism Based Brake-by-Wire System With Self-Energizing and Self-Powered Capability by Brake Energy Harvesting
,”
IEEE/ASME Trans. Mechatronics
,
21
(
5
), pp.
2568
2580
.
26.
Yu
,
L.
,
Ma
,
L.
, and
Song
,
J.
,
2016
, “
Design, Testing and Analysis of a Novel Automotive Magnetorheological Braking System
,”
Proc. Inst. Mech. Eng., Part D
, epub.
27.
Carlson
,
J. D.
,
Catanzarite
,
D. M.
, and
St. Clair
,
K. A.
,
1996
, “
Commercial Magneto-Rheological Fluid Devices
,”
Int. J. Mod. Phys. B
,
10
(
23–24
), pp.
2857
2865
.
28.
Dong
,
S.
,
Lu
,
K. Q.
,
Sun
,
J. Q.
, and
Rudolph
,
K.
,
2006
, “
Adaptive Force Regulation of Muscle Strengthening Rehabilitation Device With Magnetorheological Fluids
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
14
(
1
), pp.
55
63
.
29.
Grigas
,
V.
,
Šulginas
,
A.
, and
Žiliukas
,
P.
,
2016
, “
Development of Magnetorheological Resistive Exercise Device for Rowing Machine
,”
Comput. Math. Methods Med.
,
2016
, p.
8979070
.
30.
Kikuchi
,
T.
,
Otsuki
,
K.
,
Furusho
,
J.
,
Abe
,
H.
,
Noma
,
J.
,
Naito
,
M.
, and
Lauzier
,
N.
,
2010
, “
Development of a Compact Magnetorheological Fluid Clutch for Human-Friendly Actuator
,”
Adv. Rob.
,
24
(
10
), pp.
1489
1502
.
31.
Shafer
,
A. S.
, and
Kermani
,
M. R.
,
2011
, “
On the Feasibility and Suitability of MR Fluid Clutches in Human-Friendly Manipulators
,”
IEEE/ASME Trans. Mechatronics
,
16
(
6
), pp.
1073
1082
.
32.
Yadmellat
,
P.
,
Shafer
,
A. S.
, and
Kermani
,
M. R.
,
2014
, “
Design and Development of a Single-Motor, Two-DOF, Safe Manipulator
,”
IEEE/ASME Trans. Mechatronics
,
19
(
4
), pp.
1384
1391
.
33.
Li
,
W. H.
,
Liu
,
B.
,
Kosasih
,
P. B.
, and
Zhang
,
X. Z.
,
2007
, “
A 2-DOF MR Actuator Joystick for Virtual Reality Applications
,”
Sens. Actuators, A
,
137
(
2
), pp.
308
320
.
34.
Blake
,
J.
, and
Gurocak
,
H. B.
,
2009
, “
Haptic Glove With MR Brakes for Virtual Reality
,”
IEEE/ASME Trans. Mechatronics
,
14
(
5
), pp.
606
615
.
35.
Senkal
,
D.
, and
Gurocak
,
H.
,
2010
, “
Serpentine Flux Path for High Torque MRF Brakes in Haptics Applications
,”
Mechatronics
,
20
(
3
), pp.
377
383
.
36.
Najmaei
,
N.
,
Kermani
,
M. R.
, and
Patel
,
R. V.
,
2015
, “
Suitability of Small-Scale Magnetorheological Fluid-Based Clutches in Haptic Interfaces for Improved Performance
,”
IEEE/ASME Trans. Mechatronics
,
20
(
4
), pp.
1863
1874
.
37.
Wang
,
D.
,
Zi
,
B.
,
Zeng
,
Y.
,
Xie
,
F.
, and
Hou
,
Y.
,
2015
, “
An Investigation of Thermal Characteristics of a Liquid-Cooled Magnetorheological Fluid-Based Clutch
,”
Smart Mater. Struct.
,
24
(
5
), p.
055020
.
38.
Dogruoz
,
M. B.
,
Wang
,
E. L.
,
Gordaninejad
,
F.
, and
Stipanovic
,
A. J.
,
2003
, “
Augmenting Heat Transfer From Fail-Safe Magneto-Rheological Fluid Dampers Using Fins
,”
J. Intell. Mater. Syst. Struct.
,
14
(
2
), pp.
79
86
.
39.
Zheng
,
J.
,
Zhang
,
G. H.
, and
Cao
,
X. J.
,
2009
, “
Design and Experiment for Magnetorheological Transmission Device With Heat Pipes
,”
Chin. J. Mech. Eng.
,
45
(
7
), pp.
305
311
(in Chinese).
40.
Tian
,
Z. Z.
, and
Hou
,
Y. F.
,
2011
, “
Double-Disk type Magnetorheological Clutch
,” China University of Mining and Technology, Xuzhou, China, CN Patent No.
201110041597
.https://www.google.com/patents/CN102080692A?cl=en
41.
Wang
,
D. M.
,
Hou
,
Y. F.
, and
Tian
,
Z. Z.
,
2013
, “
A Novel High-Torque Magnetorheological Brake With a Water Cooling Method for Heat Dissipation
,”
Smart Mater. Struct.
,
22
(
2
), p.
025019
.
42.
Bydon
,
S.
,
2003
, “
Simulation of Induction Motor Shaft Positioning System With Magnetorheological Brake
,”
28th ASR 2003 Seminar on Instruments and Control
, Ostrava, Poland, May 6, pp.
28
34
.http://akce.fs.vsb.cz/2003/asr2003/Proceedings/papers/028.pdf
43.
Park
,
E. J.
,
Stoikov
,
D.
,
da Luz
,
L. F.
, and
Suleman
,
A.
, 2006, “
A Performance Evaluation of an Automotive Magnetorheological Brake Design With a Sliding Mode Controller
,”
Mechatronics
,
16
(
7
), pp.
405
416
.
44.
Zheng
,
D.
,
Ye
,
W.
,
Hu
,
L.
,
Deng
,
Y.
, and
Zhan
,
J.
,
2009
, “
Numerical and Experimental Studies on Temperature Field of Rotary MRF Dampers
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
), Singapore, July 14–17, pp.
42
46
.
45.
Cui
,
J.
,
Xie
,
F.
,
Liu
,
Q.
,
Wang
,
C.
,
Zhang
,
X.
,
Zheng
,
G.
, and
Xuan
,
R.
,
2013
, “
Three-Dimensional Flow Field Numerical Simulation and Performance Analysis for a New Type Canned Motor Pump
,”
Proc. Inst. Mech. Eng., Part C
,
227
(
12
), pp.
2825
2833
.
46.
Ding
,
S. N.
,
1992
,
Heat and Cooling of Large Electric Machine
,
Science Press
,
Beijing, China
.
47.
Wang
,
D.
,
Tian
,
Z.
,
Meng
,
Q.
, and
Hou
,
Y.
,
2013
, “
Development of a Novel Two-Layer Multiplate Magnetorheological Clutch for High-Power Applications
,”
Smart Mater. Struct.
,
22
(
8
), p.
085018
.
You do not currently have access to this content.