Aspect ratio is an important parameter in the study of flow through noncircular microchannel. In this work, three-dimensional numerical study is carried out to understand the effect of cross aspect ratio (height to width) on flow in diverging and converging microchannels. Three-dimensional models of the diverging and converging microchannels with angle: 2–14 deg, aspect ratio: 0.05–0.58, and Reynolds number: 130–280 are employed in the simulations with water as the working fluid. The effects of aspect ratio on pressure drop in equivalent diverging and converging microchannels are studied in detail and correlated to the underlying flow regime. It is observed that for a given Reynolds number and angle, the pressure drop decreases asymptotically with aspect ratio for both the diverging and converging microchannels. At small aspect ratio and small Reynolds number, the pressure drop remains invariant of angle in both the diverging and converging microchannels; the concept of equivalent hydraulic diameter can be applied to these situations. Onset of flow separation in diverging passage and flow acceleration in converging passage is found to be a strong function of aspect ratio, which has not been shown earlier. The existence of a critical angle with relevance to the concept of equivalent hydraulic diameter is identified and its variation with Reynolds number is discussed. Finally, the effect of aspect ratio on fluidic diodicity is discussed which will be helpful in the design of valveless micropump. These results help in extending the conventional formulae made for uniform cross-sectional channel to that for the diverging and converging microchannels.

References

1.
Chandrasekaran
,
A.
, and
Packirisamy
,
M.
,
2016
, “
Improved Efficiency of Microdiffuser Through Geometry Tuning for Valveless Micropumps
,”
ASME J. Fluids Eng.
,
138
, p.
031101
.
2.
Afzal
,
A.
, and
Kim
,
K.-Y.
,
2015
, “
Convergent–Divergent Micromixer Coupled With Pulsatile Flow
,”
Sens. Actuators B: Chem.
,
211
, pp.
198
205
.
3.
Xuan
,
X.
,
Xu
,
B.
, and
Li
,
D.
,
2005
, “
Accelerated Particle Electrophoretic Motion and Separation in Converging–Diverging Microchannels
,”
Anal. Chem.
,
77
(
14
), pp.
4323
4328
.
4.
Zografos
,
K.
,
Pimenta
,
F.
,
Alves
,
M. A.
, and
Oliveira
,
M. S. N.
,
2016
, “
Microfluidic Converging/Diverging Channels Optimized for Homogeneous Extensional Deformation
,”
Biomicrofluidics
,
10
(
4
), p.
043508
.
5.
Stemme
,
E.
, and
Stemme
,
G.
,
1993
, “
A Valveless Diffuser/Nozzle-Based Fluid Pump
,”
Sens. Actuators A
,
39
(
2
), pp.
159
167
.
6.
Singhal
,
V.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
,
2004
, “
Low Reynolds Number Flow Through Nozzle-Diffuser Elements in Valveless Micropumps
,”
Sens. Actuators A
,
113
(
2
), pp.
226
235
.
7.
Lee
,
P. C.
, and
Pan
,
C.
,
2008
, “
Boiling Heat Transfer and Two-Phase Flow of Water in a Single Shallow Microchannel With a Uniform or Diverging Cross Section
,”
J. Micromech. Microeng.
,
18
(
2
), p.
025005
.
8.
Duryodhan
,
V. S.
,
Singh
,
S. G.
, and
Agrawal
,
A.
,
2013
, “
Liquid Flow Through a Diverging Microchannel
,”
Microfluid. Nanofluid.
,
14
(
1–2
), pp.
53
67
.
9.
Duryodhan
,
V. S.
,
Singh
,
S. G.
, and
Agrawal
,
A.
,
2014
, “
Liquid Flow Through Converging Microchannels and a Comparison With Diverging Microchannels
,”
J. Micromech. Microeng.
,
24
(
12
), p.
125002
.
10.
Akbari
,
M.
,
Sinton
,
D.
, and
Bahrami
,
M.
,
2011
, “
Viscous Flow in Variable Cross-Section Microchannels of Arbitrary Shapes
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
3970
3978
.
11.
Duryodhan
,
V. S.
,
Singh
,
A.
,
Singh
,
S. G.
, and
Agrawal
,
A.
,
2015
, “
Convective Heat Transfer in Diverging and Converging Microchannels
,”
Int. J. Heat Mass Transfer
,
80
, pp.
424
438
.
12.
Varade
,
V.
,
Agrawal
,
A.
, and
Pradeep
,
A. M.
,
2015
, “
Slip Flow Through a Converging Microchannel: Experiments and 3D Simulations
,”
J. Micromech. Microeng.
,
25
(
2
), p.
025015
.
13.
Varade
,
V.
,
Duryodhan
,
V. S.
,
Agrawal
,
A.
,
Pradeep
,
A. M.
,
Ebrahimi
,
A.
, and
Roohi
,
E.
,
2015
, “
Low Mach Number Slip Flow Through Diverging Microchannel
,”
Comput. Fluids
,
111
, pp.
46
61
.
14.
Morini
,
G. L.
,
2004
, “
Laminar Liquid Flow Through Silicon Microchannels
,”
ASME J. Fluids Eng.
,
126
(
3
), pp.
485
489
.
15.
Akbari
,
M.
,
Sinton
,
D.
, and
Bahrami
,
M.
,
2009
, “
Pressure Drop in Rectangular Microchannels as Compared With Theory Based on Arbitrary Cross Section
,”
ASME J. Fluids Eng.
,
131
(
4
), p.
041202
.
16.
Papautsky
,
I.
,
Gale
,
B. K.
,
Mohanty
,
S. K.
,
Ameel
,
T. A.
, and
Frazier
,
A. B.
,
1999
, “
Effects of Rectangular Microchannel Aspect Ratio on Laminar Friction Constant
,”
Proc. SPIE
,
3877
, pp.
147
158
.
17.
Wu
,
H. Y.
, and
Cheng
,
P.
,
2003
, “
Friction Factors in Smooth Trapezoidal Silicon Microchannels With Different Aspect Ratios
,”
Int. J. Heat Mass Transfer
,
46
(
14
), pp.
2519
2525
.
18.
Peng
,
X. F.
, and
Peterson
,
G. P.
,
1996
, “
Convective Heat Transfer and Flow Friction for Water Flow in Microchannel Structures
,”
Int. J. Heat Mass Transfer
,
39
(
12
), pp.
2599
2608
.
19.
Morini
,
G. L.
,
Spiga
,
M.
, and
Tartarini
,
P.
,
2004
, “
The Rarefaction Effect on the Friction Factor of Gas Flow in Microchannels
,”
Superlattices Microstruct.
,
35
(3–6), pp.
587
599
.
20.
Agrawal
,
A.
, and
Agrawal
,
A.
,
2006
, “
Three-Dimensional Simulation of Gaseous Slip Flow in Different Aspect Ratio Microducts
,”
Phys. Fluids
,
18
(
10
), p.
103604
.
21.
Singh
,
S. G.
,
Kulkarni
,
A.
,
Duttagupta
,
S. P.
,
Puranik
,
B. P.
, and
Agrawal
,
A.
,
2008
, “
Impact of Aspect Ratio on Flow Boiling of Water in Rectangular Microchannels
,”
Exp. Therm. Fluid Sci.
,
33
(
1
), pp.
153
160
.
22.
Aubin
,
J.
,
Prat
,
L.
,
Xuereb
,
C.
, and
Gourdon
,
C.
,
2009
, “
Effect of Microchannel Aspect Ratio on Residence Time Distributions and the Axial Dispersion Coefficient
,”
Chem. Eng. Process.
,
48
(
1
), pp.
554
559
.
23.
Jotkar
,
M. R.
,
Swaminathan
,
G.
,
Sahu
,
K. C.
, and
Govindarajan
,
R.
,
2016
, “
Global Linear Instability of Flow Through a Converging–Diverging Channel
,”
ASME J. Fluids Eng.
,
138
(
3
), p.
031301
.
24.
White
,
F. M.
,
2008
,
Fluid Mechanics
, 6th ed.,
The McGraw-Hill
,
New York
, pp.
389
402
.
25.
Duryodhan
,
V. S.
,
Singh
,
S. G.
, and
Agrawal
,
A.
,
2016
, “
Heat Rate Distribution in Converging and Diverging Microchannel in Presence of Conjugate Effect
,”
Int. J. Heat Mass Transfer
,
104
, pp.
1022
1033
.
26.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
, “
Laminar Flow Forced Convection in Ducts
,”
Advances in Heat Transfer
,
Academic Press
,
New York
.
27.
Fadl
,
A.
,
Zhang
,
Z.
,
Geller
,
S.
,
Tolke
,
J.
,
Krafczyk
,
M.
, and
Meyer
,
D.
,
2009
, “
The Effect of the Microfluidic Diodicity on the Efficiency of Valve-Less Rectification Micropumps Using Lattice Boltzmann Method
,”
Microsyst. Technol.
,
15
(
9
), pp.
1379
1387
.
28.
Olson
,
A.
,
Stemme
,
G.
, and
Stemme
,
E.
,
2000
, “
Numerical and Experimental Studied of Flat-Walled Diffuser Elements for Valve-Less Micropumps
,”
Sens. Actuators
,
84
(
1–2
), pp.
165
175
.
You do not currently have access to this content.