Chemical reactors, air lubrication systems, and the aeration of the oceans rely, either in part or in whole, on the interaction of bubbles and their surrounding liquid. Even though bubbly mixtures have been studied at both the macroscopic and bubble level, the dissipation field associated with an individual bubble in a shear flow has not been thoroughly investigated. Exploring the nature of this phenomenon is critical not only when examining the effect a bubble has on the dissipation in a bulk shear flow but also when a microbubble interacts with turbulent eddies near the Kolmogorov length scale. In order to further our understanding of this behavior, this study investigated these interactions both analytically and experimentally. From an analytical perspective, expressions were developed to model the dissipation associated with the creeping flow fields in and around a fluid particle immersed in a linear shear flow. Experimentally, tests were conducted using a simple test setup that corroborated the general findings of the theoretical investigation. Both the analytical and experimental results indicate that the presence of bubbles in a shear flow causes elevated dissipation of kinetic energy.

References

1.
Brunn
,
P.
,
1981
, “
The Hydrodynamic Wall Effect for a Disperse System
,”
Int. J. Multiphase Flow
,
7
(
2
), pp.
221
234
.
2.
McCormic
,
M. E.
, and
Bhattach
,
R.
,
1973
, “
Drag Reduction of a Submersible Hull by Electrolysis
,”
Nav. Eng. J.
,
85
(
2
), pp.
11
16
.
3.
Kodama
,
Y.
,
Kakugawa
,
A.
,
Takahashi
,
T.
, and
Kawashima
,
H.
,
2000
, “
Experimental Study on Microbubbles and Their Applicability to Ships for Skin Friction Reduction
,”
Int. J. Heat Fluid Flow
,
21
(
5
), pp.
582
588
.
4.
Ouyang
,
K.
,
Wu
,
S.
, and
Huang
,
H.
,
2013
, “
Optimum Parameter Design of Microbubble Drag Reduction in a Turbulent Flow by the Taguchi Method Combined With Artificial Neural Networks
,”
ASME J. Fluids Eng.
,
135
(
11
), p.
111301
.
5.
Kawara
,
Z.
,
Yanagisawa
,
H.
,
Kunugi
,
T.
, and
Serizawa
,
A.
,
2007
, “
Study on Flow Characteristics of Micro-Bubble Two-Phase Flow
,”
11th EUROMECH European Turbulence Conference
, Porto, Portugal, June 25–28, pp.
334
336
.
6.
Fontaine
,
A. A.
, and
Deutsch
,
S.
,
1992
, “
The Influence of the Type of Gas on the Reduction of Skin Friction Drag by Microbubble Injection
,”
Exp. Fluids
,
13
(
2
), pp.
128
136
.
7.
Hoang
,
C. L.
,
Toda
,
Y.
, and
Sanada
,
Y.
,
2009
, “
Full Scale Experiment for Frictional Resistance Reduction Using Air Lubrication Method
,”
19th International Offshore and Polar Engineering Conference
, Osaka, Japan, June 21–26, pp.
812
817
.
8.
Mizokami
,
S.
,
Kawakita
,
C.
,
Kodan
,
Y.
,
Takano
,
S.
,
Higasa
,
S.
, and
Shigenaga
,
R.
,
2010
, “
Experimental Study of Air Lubrication Method and Verification of Effects on Actual Hull by Means of Sea Trial
,”
Mitsubishi Heavy Ind. Tech. Rev.
,
47
(3), pp.
41
47
.
9.
Thill
,
C.
,
Toxopeus
,
S.
, and
van Walree
,
F.
,
2005
, “
Project Energy-Saving Air-Lubricated Ships (PELS)
,”
2nd International Symposium on Seawater Drag Reduction
, Busan, Korea, May 23–26.
10.
Yanuar
,
Gunawan
,
Sunaryo
, and
Jamaluddin
,
A.
,
2012
, “
Micro-Bubble Drag Reduction on a High Speed Vessel Model
,”
J. Mar. Sci. Appl.
,
11
(
3
), pp.
301
304
.
11.
Reinhardt
,
Y.
, and
Kleiser
,
L.
,
2015
, “
Validation of Particle-Laden Turbulent Flow Simulations Including Turbulence Modulation
,”
ASME J. Fluids Eng.
,
137
(
7
), p.
071303
.
12.
Bolotnov
,
I.
,
2013
, “
Influence of Bubbles on the Turbulence Anisotropy
,”
ASME J. Fluids Eng.
,
135
(
5
), p.
051301
.
13.
Patro
,
P.
, and
Dash
,
S. K.
,
2014
, “
Computations of Particle-Laden Turbulent Jet Flows Based on Eulerian Model
,”
ASME J. Fluids Eng.
,
136
(
1
), p.
011301
.
14.
Zhang
,
J.
,
Zhang
,
Q.
, and
Qiao
,
G.
,
2014
, “
A Lattice Boltzmann Model for the Non-Equilibrium Flocculation of Cohesive Sediments in Turbulent Flow
,”
Comput. Math. Appl.
,
67
(
2
), pp.
381
392
.
15.
Molin
,
D.
,
Marchioli
,
C.
, and
Soldati
,
A.
,
2012
, “
Turbulence Modulation and Microbubble Dynamics in Vertical Channel Flow
,”
Int. J. Multiphase Flow
,
42
, pp.
80
95
.
16.
Madavan
,
N. K.
,
Merkle
,
C. L.
, and
Deutsch
,
S.
,
1985
, “
Numerical Investigations Into the Mechanisms of Microbubble Drag Reduction
,”
ASME J. Fluids Eng.
,
107
(
3
), pp.
370
377
.
17.
Maxey
,
M. R.
,
Dong
,
S.
,
Xu
,
J.
, and
Karniadakis
,
G. E.
,
2005
, “
Simulations for Microbubble Drag Reduction (MBDR) at High Reynolds Numbers
,”
HPCMP Users Group Conference
, Nashville, TN, June 27–30, pp.
153
159
.
18.
Kunz
,
R. F.
,
Deutsch
,
S.
, and
Lindau
,
J. W.
,
2003
, “
Two Fluid Modeling of Microbubble Turbulent Drag Reduction
,”
ASME
Paper No. FEDSM2003-45640.
19.
Skudarnov
,
P. V.
, and
Lin
,
C. C.
,
2006
, “
Drag Reduction by Gas Injection Into Turbulent Boundary Layer: Density Ratio Effect
,”
Int. J. Heat Fluid Flow
,
27
(
3
), pp.
436
444
.
20.
Legner
,
H. H.
,
1984
, “
A Simple Model for Gas Bubble Drag Reduction
,”
Phys. Fluids
,
27
(
12
), pp.
2788
2790
.
21.
Kanai
,
A.
, and
Miyata
,
H.
,
2001
, “
Direct Numerical Simulation of Wall Turbulent Flows With Microbubbles
,”
Int. J. Numer. Methods Fluids
,
35
(
5
), pp.
593
615
.
22.
Ferrante
,
A.
, and
Elghobashi
,
S.
,
2005
, “
Reynolds Number Effect on Drag Reduction in a Microbubble-Laden Spatially Developing Turbulent Boundary Layer
,”
J. Fluid Mech.
,
543
, pp.
93
106
.
23.
Ferrante
,
A.
, and
Elghobashi
,
S.
,
2004
, “
On the Physical Mechanisms of Drag Reduction in a Spatially Developing Turbulent Boundary Layer Laden With Microbubbles
,”
J. Fluid Mech.
,
503
, pp.
345
355
.
24.
Tennekes
,
H.
,
1968
, “
Simple Model for the Small-Scale Structure of Turbulence
,”
Phys. Fluids
,
11
(
3
), pp.
669
671
.
25.
Lundgren
,
T. S.
,
1982
, “
Strained Spiral Vortex Model for Turbulent Fine-Structure
,”
Phys. Fluids
,
25
(
12
), pp.
2193
2203
.
26.
Ottino
,
J. M.
,
1982
, “
Description of Mixing With Diffusion and Reaction in Terms of the Concept of Material Surfaces
,”
J. Fluid Mech.
,
114
, pp.
83
103
.
27.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
, 7th ed.,
Wiley
, Hoboken, NJ.
28.
Chanson
,
H.
,
1996
,
Air Bubble Entrainment in Free-Surface Turbulent Shear Flows
,
Academic Press
,
San Diego, CA
.
29.
Qian
,
D.
,
McLaughlin
,
J. B.
,
Sankaranarayanan
,
K.
,
Sundaresan
,
S.
, and
Kontomaris
,
K.
,
2006
, “
Simulation of Bubble Breakup Dynamics in Homogeneous Turbulence
,”
Chem. Eng. Commun.
,
193
(
8
), pp.
1038
1063
.
30.
Clift
,
R.
,
Grace
,
J. R.
, and
Weber
,
M. E.
,
1978
,
Bubbles, Drops, and Particles
,
Academic Press
,
New York
.
31.
Weast
,
R. C.
,
1986
,
CRC Handbook of Chemistry and Physics
, 67th ed.,
CRC Press
,
Boca Raton, FL
.
32.
Levich
,
V. G.
,
1962
,
Physicochemical Hydrodynamics
,
Prentice-Hall
,
Upper Saddle River, NJ
.
33.
Cox
,
R. G.
,
Zia
,
I. Y. Z.
, and
Mason
,
S. G.
,
1968
, “
Particle Motions in Sheared Suspensions XXV. Streamlines Around Cylinders and Spheres
,”
J. Colloid Interface Sci.
,
27
(
1
), pp.
7
18
.
34.
Leal
,
L. G.
,
1992
,
Laminar Flow and Convective Transport Processes–Scaling Principles and Asymptotic Analysis
,
Butterworth-Heinemann
,
Boston, MA
.
35.
Cherry
,
R. S.
, and
Kwon
,
K. Y.
,
1990
, “
Transient Shear Stresses on a Suspension Cell in Turbulence
,”
Biotechnol. Bioeng.
,
36
(
6
), pp.
563
571
.
36.
Potter
,
M. C.
, and
Wiggert
,
D. C.
,
2002
,
Mechanics of Fluids
, 3rd ed.,
Brooks/Cole
,
Pacific Grove, CA
.
37.
White
,
F. M.
,
2006
,
Viscous Fluid Flow
, 3rd ed.,
McGraw-Hill
,
New York
.
38.
Trevelyan
,
B. J.
, and
Mason
,
S. G.
,
1951
, “
Particle Motions in Sheared Suspensions—I: Rotations
,”
J. Colloid Sci.
,
6
(
4
), pp.
354
367
.
39.
Hosokawa
,
S.
,
Suzuki
,
T.
, and
Tomiyama
,
A.
,
2012
, “
Turbulence Kinetic Energy Budget in Bubbly Flows in a Vertical Duct
,”
Exp. Fluids
,
52
(
3
), pp.
719
728
.
40.
Wang
,
L.
,
Ayala
,
O.
,
Gao
,
H.
,
Anderson
,
C.
, and
Mathews
,
K. L.
,
2013
, “
Study of Forced Turbulence and Its Modulation by Finite-Size Solid Particles Using the Lattice Boltzmann Approach
,”
Comput. Math. Appl.
,
67
(
2
), pp.
363
380
.
41.
Yeo
,
K.
,
Dong
,
S.
,
Climent
,
E.
, and
Maxey
,
M. R.
,
2010
, “
Modulation of Homogeneous Turbulence Seeded With Finite Size Bubbles or Particles
,”
Int. J. Multiphase Flow
,
36
(
3
), pp.
221
233
.
42.
Goa
,
H.
,
Li
,
H.
, and
Wang
,
L.
,
2013
, “
Lattice Boltzmann Simulation of Turbulent Flow Laden With Finite-Size Particles
,”
Comput. Math. Appl.
,
65
(
2
), pp.
194
210
.
43.
Parmar
,
R.
, and
Majumder
,
S. K.
,
2014
, “
Hydrodynamics of Microbubble Suspension Flow in Pipes
,”
Ind. Eng. Chem. Res.
,
53
(
9
), pp.
3689
3701
.
44.
Marie
,
J. L.
,
1987
, “
A Simple Analytical Formulation for Microbubble Drag Reduction
,”
Physicochem. Hydrodyn.
,
8
(
2
), pp.
213
220
.
45.
Foeth
,
E. J.
,
2008
, “
Decreasing Frictional Resistance by Air Lubrication
,”
20th International Hiswa Symposium on Yacht Design and Yacht Construction
, Amsterdam, The Netherlands, Nov. 17–18.
46.
Gemmrich
,
J.
,
2012
, “
Bubble-Induced Turbulence Suppression in Langmuir Circulation
,”
Geophys. Res. Lett.
,
39
, p.
L10604
.
47.
Foeth
,
E. J.
,
Eggers
,
R.
,
van der Hout
,
I.
, and
Quadvlieg
,
F. H. H. A.
,
2009
, “
Reduction of Frictional Resistance by Air Bubble Lubrication
,”
Trans. Soc. Nav. Archit. Mar. Eng.
,
117
, pp.
19
29
.
48.
Kato
,
H.
, and
Kodama
,
Y.
,
2003
, “
Microbubbles as a Skin Friction Reduction Device–A Midterm Review of the Research
,”
4th Symposium on Smart Control of Turbulence
, Tokyo, Japan, Mar. 2–4.
You do not currently have access to this content.