In Francis turbines, which are normally designed at a reaction ratio of 0.5, the available pressure energy in the fluid is converted into 50% kinetic energy before entering the runner. This causes high acceleration of the flow in guide vanes (GVs), which adds to the unsteadiness and losses in the turbine. In sediment-affected power plants, the hard sand particles erode and gradually increase the clearance gap between the GV and facing plates, which causes more disturbances in downstream turbine components. This study focuses on investigating the flow through the clearance gap of the GV with cambered hydrofoil shapes by using particle image velocimetry (PIV) technique. The measurements are carried out in one GV cascade rig, which produces similar velocity fields around a GV, as compared to the real turbine. The investigation is done in two cases of cambered GV National Advisory Committee for Aeronautics (NACA) profiles, and the comparison of the velocity and pressure distribution around the hydrofoil is done with the results in symmetric profile studied earlier. It is seen that the pressure distribution around the hydrofoil affects the velocity field, leakage flow, and characteristics of the vortex filament developed inside the cascade. NACA4412, which has flatter suction side (SS) than NACA2412 and NACA0012, is seen to have smaller pressure difference between the two adjacent sides of the vane. The flow inside the clearance gap of NACA2412 enforces change in the flow angle, which forms a vortex filament with a rotational component. This vortex along with improper stagnation angle could have greater consequences in the erosion of the runner inlet (RIn) and more losses of the turbine.

References

1.
Neopane
,
H. P.
,
Dahlhaug
,
O. G.
, and
Cervantes
,
M.
,
2012
, “
The Effect of Sediment Characteristics for Predicting Erosion on Francis Turbines Blades
,”
Int. J. Hydropower Dams
,
19
(
1
), pp.
79
83
.
2.
Brekke
,
H.
,
1988
, “
The Influence From the Guide Vane Clearance Gap on Efficiency and Scale Effect for Francis Turbines
,”
14th IAHR Symposium
, Section on Hydraulic Machinery Equipment and Cavitation, Trondheim, Norway, June 20–23, pp. 825–837.
3.
Milliman
,
J. D.
, and
Meade
,
R. H.
,
1983
, “
World-Wide Delivery of River Sediments to the Oceans
,”
J. Geol.
,
91
(
1
), pp.
1
21
.
4.
Thapa
,
B.
,
2004
, “
Sand Erosion in Hydraulic Machinery
,”
Doctoral thesis
, Norwegian University of Science and Technology, Trondheim, Norway.
5.
Padhy
,
M. K.
, and
Saini
,
R.
,
2007
, “
A Review on Silt Erosion in Hydro Turbines
,”
Renewable Sustainable Energy Rev.
,
12
(
7
), pp.
1974
1987
.
6.
Thapa
,
B. S.
,
Dahlhaug
,
O. G.
, and
Thapa
,
B.
,
2014
, “
Sediment Erosion in Hydro Turbines and Its Effect on the Flow Around Guide Vanes of Francis Turbine
,”
Renewable Sustainable Energy Rev.
,
49
, pp.
1100
1113
.
7.
Thapa
,
B. S.
,
Thapa
,
B.
,
Eltvik
,
M.
,
Gjosater
,
K.
, and
Dahlhaug
,
O. G.
,
2012
, “
Optimizing Runner Blade Profile of Francis Turbine to Minimize Sediment Erosion
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
15
(Part 3), p. 032052.
8.
Koirala
,
R.
,
Thapa
,
B.
,
Neopane
,
H. P.
,
Zhu
,
B.
, and
Chhetry
,
B.
,
2016
, “
Sediment Erosion in Guide Vanes of Francis Turbine: A Case Study of Kaligandaki Hydropower Plant, Nepal
,”
Wear
,
362–363
, pp.
53
60
.
9.
Brekke
,
H.
,
Wu
,
Y.
, and
Cai
,
B. Y.
,
2002
, “
Design of Hydraulic Machinery Working in Sand Laden Water
,”
Abrasive Erosion and Corrosion of Hydraulic Machinery
,
Imperial College Press
, London, pp.
155
233
.
10.
Koirala
,
R.
,
Thapa
,
B.
,
Neopane
,
H. P.
, and
Zhu
,
B.
,
2016
, “
A Review on Flow and Sediment Erosion in Guide Vanes of Francis Turbines
,”
Renewable Sustainable Energy Rev.
, (epub).
11.
Chitrakar
,
S.
,
Neopane
,
H. P.
, and
Dahlhaug
,
O. G.
,
2016
, “
Study of the Simultaneous Effects of Secondary Flow and Sediment Erosion in Francis Turbines
,”
Renewable Energy
,
97
, pp.
881
891
.
12.
Ciocan
,
G. D.
, and
Iliescu
,
M. S.
,
2012
, “
PIV Measurements Applied to Hydraulic Machinery: Cavitating and Cavitation-Free Flows
,”
The Particle Image Velocimetry—Characteristics, Limits and Possible Applications
, InTech, Rijeka, Croatia.
13.
Dular
,
M.
,
Bachert
,
R.
,
Stoffel
,
B.
, and
Sirok
,
B.
,
2005
, “
Experimental Evaluation of Numerical Simulation of Cavitating Flow Around Hydrofoil
,”
Eur. J. Mech., B: Fluids
,
24
(
4
), pp.
522
538
.
14.
von Ellenrieder
,
K. D.
, and
Pothos
,
S.
,
2008
, “
PIV Measurements of the Asymmetric Wake of a Two Dimensional Heaving Hydrofoil
,”
Exp. Fluids
,
44
(
5
), pp.
733
745
.
15.
Dreyer
,
M.
,
Decaix
,
J.
,
Münch-Alligné
,
C.
, and
Farhat
,
M.
,
2014
, “
Mind the Gap: A New Insight Into the Tip Leakage Vortex Using Stereo-PIV
,”
Exp. Fluids
,
55
(
11
), p. 1849.
16.
Krane
,
M. H.
,
Meyer
,
R. S.
,
Weldon
,
M. J.
,
Elbing
,
B.
, and
DeVilbiss
,
D. W.
,
2015
, “
Measurements of Loading and Tip Vortex Due to High-Reynolds Number Flow Over a Rigid Lifting Surface
,”
ASME J. Fluids Eng.
,
137
(
7
), p.
071301
.
17.
Oweis
,
G. F.
,
Fry
,
D.
,
Chesnakas
,
C. J.
,
Jessup
,
S. D.
, and
Ceccio
,
S. L.
,
2006
, “
Development of a Tip-Leakage Flow—Part 1: The Flow Over a Range of Reynolds Numbers
,”
ASME J. Fluids Eng.
,
128
(
4
), pp.
751
764
.
18.
Thapa
,
B. S.
,
Trivedi
,
C.
, and
Dahlhaug
,
O. G.
,
2016
, “
Design and Development of Guide Vane Cascade for a Low Speed Number Francis Turbine
,”
J. Hydrodyn., Ser. B
,
28
(
4
), pp.
676
689
.
19.
Thapa
,
B. S.
,
Dahlhaug
,
O. G.
, and
Thapa
,
B.
,
2016
, “
Velocity and Pressure Measurements in Guide Gane Clearance Gap of a Low Specific Speed Francis Turbine
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
49
, p. 062019.
20.
Thapa
,
B. S.
,
2016
, “
Effects of Sediment Erosion in Guide Vanes of Francis Turbines
,”
Ph.D. thesis
, Norwegian University of Science and Technology, Trondheim, Norway.
21.
Chitrakar
,
S.
,
Thapa
,
B. S.
,
Dahlhaug
,
O. G.
, and
Neopane
,
H. P.
,
2016
, “
Numerical Investigation of the Flow Phenomena Around a Low Specific Speed Francis Turbine's Guide Vane Cascade
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
49
, p. 062016.
22.
Raffel
,
M.
,
Willert
,
C. E.
,
Werely
,
S. T.
, and
Kompenhans
,
J.
,
2007
,
Particle Image Velocimetry—A Practical Guide
, 2nd ed.,
Springer
, Berlin.
23.
Ockfen
,
A. E.
, and
Matveev
,
K. I.
,
2009
, “
Aerodynamic Characteristics of NACA 4412 Airfoil Section With Flap in Extreme Ground Effect
,”
Int. J. Nav. Archit. Ocean Eng.
,
1
(
1
), pp.
1
12
.
24.
Maddah
,
S. R.
, and
Brunn
,
H. H.
,
2002
, “
An Investigation of Flow Fields Over Multi-Element Aerofoils
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
154
165
.
25.
Thapa
,
B. S.
,
Dahlhaug
,
O. G.
, and
Thapa
,
B.
,
2017
, “
Sediment Erosion Induced Leakage Flow From Guide Vane Clearance Gap in a Low Specific Speed Francis Turbine
,”
Renewable Energy
,
107
, pp.
253
261
.
You do not currently have access to this content.