A dimensional analysis which is based on the scaling of the two-dimensional Navier–Stokes equations is presented for correlating bulk flow characteristics arising from a variety of initial conditions. The analysis yields a functional relationship between the characteristic variable of the flow region and the Reynolds number for each of the two independent flow regimes, laminar and turbulent. A linear relationship is realized for the laminar regime, while a nonlinear relationship is realized for the turbulent regime. Both relationships incorporate mass-flow profile characteristics to capture the effects of initial conditions (mean flow and turbulence) on the variation of the characteristic variable. The union of these two independent relationships is formed leveraging the concept of flow intermittency to yield a generic functional relationship that incorporates transitional flow effects and fully encompasses solutions spanning the laminar to turbulent flow regimes. Empirical models to several common flows are formed to demonstrate the engineering potential of the proposed functional relationship.

References

1.
Li
,
X.
, and
Djilali
,
N.
,
1995
, “
On the Scaling of Separation Bubbles
,”
JSME Int. J.
,
38
(
4
), pp.
541
548
.
2.
Bejan
,
A.
,
1984
,
Convection Heat Transfer
,
Wiley
,
New York
.
3.
Papadopoulos
,
G.
, and
Pitts
,
W. M.
,
1998
, “
Scaling the Near-Field Centerline Mixing Behavior of Axisymmetric Turbulent Jets
,”
AIAA J.
,
36
(
9
), pp.
1635
1642
.
4.
Papadopoulos
,
G.
, and
Pitts
,
W.
,
1999
, “
A Generic Centerline Velocity Decay Curve for Initially Turbulent Axisymmetric Jets
,”
ASME J. Fluids Eng.
,
121
(1), pp.
80
85
.
5.
George
,
W.
,
1989
, “
Self-Preservation of Turbulent Flows and Its Relation to Initial Conditions and Coherent Structures
,”
Advances in Turbulence
,
W.
George
and
R.
Arndt
, eds.,
Springer
,
New York
.
6.
Kays
,
W. M.
,
1950
, “
Loss Coefficients for Abrupt Changes in Flow Cross Section With Low Reynolds Number Flow in Single and Multiple-Tube Systems
,” Proceedings of the ASME Heat Transfer Division Spring Meeting, Washington, DC, Apr. 12–14, pp.
1067
1074
.
7.
Sautet
,
J. C.
, and
Stepowski
,
D.
,
1995
, “
Dynamic Behavior of Variable-Density, Turbulent Jets in Their Near Development Fields
,”
Phys. Fluids
,
7
(
11
), pp.
2796
2806
.
8.
Patel
,
V.
,
1974
, “
A Simple Integral Method for the Calculation of Thick Axisymmetric Turbulent Boundary Layers
,”
Aeronaut. Q.
,
25
(
1
), pp.
47
58
.
9.
Shah
,
R.
, and
London
,
A.
,
1978
,
Laminar Forced Convection in Ducts, Supplements to Advances in Heat Transfer
,
Academic Press
,
New York
.
10.
Papadopoulos
,
G.
, and
Durst
,
F.
,
1997
, “
Influence of Tripping Level and Development Length on Pipe Flow Discharge Characteristics
,”
AIAA
Paper No. AIAA97-0552.
11.
Durst
,
F.
, and
Ünsal
,
B.
,
2006
, “
Forced Laminar-to-Turbulent Transition of Pipe Flows
,”
J. Fluid Mech.
,
560
, pp.
449
464
.
12.
Nishi
,
M.
,
Ünsal
,
B.
,
Durst
,
F.
, and
Biswas
,
G.
,
2008
, “
Laminar-to-Turbulent Transition of Pipe Flows Through Puffs and Slugs
,”
J. Fluid Mech.
,
614
, pp.
425
446
.
13.
White
,
F. M.
,
1991
,
Viscous Fluid Flow
, 2nd ed.,
McGraw-Hill
,
New York
.
14.
Klebanoff
,
P. S.
,
1955
, “
Characteristics of Turbulence in Boundary Layer With Zero Pressure Gradient
,” National Bureau of Standards, Washington, DC, Technical Report No.
NACA-TR-1247
.https://ntrs.nasa.gov/search.jsp?R=19930092249
15.
Corrsin
,
S.
, and
Kistler
,
A. L.
,
1955
, “
Freestream Boundaries of Turbulent Flows
,” Johns Hopkins University, Baltimore, MD, Technical Report No.
NACA-TR-1244
.https://ntrs.nasa.gov/search.jsp?R=19930092246
16.
Avila
,
K.
,
Moxey
,
D.
,
de Lozar
,
A.
,
Avila
,
M.
,
Barkley
,
D.
, and
Hof
,
B.
,
2011
, “
The Onset of Turbulence in Pipe Flow
,”
Science
,
333
(
6039
), pp.
192
196
.
17.
Patel
,
V.
, and
Head
,
M.
,
1969
, “
Some Observations on Skin Friction and Velocity Profiles in Fully Developed Pipe and Channel Flows
,”
J. Fluid Mech.
,
38
(
1
), pp.
181
201
.
18.
Nikuradse
,
J.
,
1933
, “
Gesetzmäßigkeiten der Turbulenten Strömung in Glatten Rohren (Nachtrag)
,”
Forschungsarb. Ingenieurwes.
,
4
(1), p. 44.
19.
Papadopoulos
,
G.
,
Lekakis
,
I.
, and
Durst
,
F.
,
1997
, “
Reynolds Number Asymptotic Covariance for Turbulent Pipe Flow Past a Sudden Expansion
,”
ASME Paper No. FEDSM97-3323
.
20.
den Toonder
,
J. M. J.
, and
Nieuwstadt
,
F. T. M.
,
1997
, “
Reynolds Number Effects in a Turbulent Pipe Flow for Low to Moderate Re
,”
Phys. Fluids
,
9
(
3398
), pp.
3398
3409
.
21.
Pinho
,
F.
, and
Whitelaw
,
J.
,
1990
, “
Flow of Non-Newtonian Fluids in a Pipe
,”
J. Non-Newtonian Fluid Mech.
,
34
(
2
), pp.
129
144
.
22.
Rhodes
,
D. G.
, and
New
,
A. P.
,
2000
, “
Preston Tube Measurements in Low Reynolds Number Turbulent Pipe Flow
,”
J. Hydraul. Eng.
,
126
(
6
), pp.
407
415
.
23.
Clauser
,
F. H.
,
1956
, “
The Turbulent Boundary Layer
,”
Adv. Appl. Mech.
,
4
, pp.
1
51
.
24.
Bandyopadhyay
,
P. R.
,
1992
, “
Reynolds Number Dependence of the Freestream Turbulence Effects on Turbulent Boundary Layers
,”
AIAA J.
,
30
(
7
), pp.
1910
1912
.
25.
Bandyopadhyay
,
P. R.
,
1987
, “
Rough-Wall Turbulent Boundary Layer in the Transition Regime
,”
J. Fluid Mech.
,
180
, pp.
231
266
.
26.
Blair
,
M. F.
, and
Werle
,
M. J.
,
1980
, “
The Influence of Free-Stream Turbulent on Boundary Layer Development
,”
United Technologies Research Center, East Hartford, CT, Report No. R80-914388-12
.
27.
Gillis
,
J. C.
,
1980
, “
Turbulent Boundary Layer on a Convex, Curved Surface
,”
Ph.D. thesis, Stanford University, Stanford, CA
.
28.
Anders
,
J. B.
,
1989
, “
Boundary Layer Manipulators at High Reynolds Numbers
,”
Structure of Turbulent and Drag Reduction
,
Springer-Verlag
,
New York
, pp.
475
482
.
29.
Hasan
,
M.
, and
Hussain
,
A.
,
1982
, “
The Self-Excited Axisymmetric Jet
,”
J. Fluid Mech.
,
115
, pp.
59
89
.
30.
Russ
,
S.
, and
Strykowski
,
P.
,
1993
, “
Turbulent Structure and Entrainment in Heated Jets: The Effect of Initial Conditions
,”
Phys. Fluids A
,
5
(
12
), p.
3216
.
31.
Boersma
,
B. J.
,
Brethouwer
,
G.
, and
Nieuwstadt
,
F. T. M.
,
1998
, “
A Numerical Investigation on the Effect of the Inflow Conditions on the Self-Similar Region of a Round Jet
,”
Phys. Fluids
,
10
(
4
), pp.
899
909
.
32.
Kuhlman
,
J.
,
1987
, “
Variation of Entrainment in Annular Jets
,”
AIAA J.
,
25
(
3
), pp.
373
379
.
33.
Hussein
,
H.
,
Capp
,
S.
, and
George
,
W.
,
1994
, “
Velocity Measurements in a High-Reynolds-Number, Momentum-Conserving, Axisymmetric, Turbulent Jet
,”
J. Fluid Mech.
,
258
, pp.
31
75
.
34.
Lane
,
J. C.
, and
Loehrke
,
R. I.
,
1980
, “
Leading Edge Separation From a Blunt Plate at Low Reynolds Number
,”
ASME J. Fluids Eng.
,
102
(
4
), pp.
494
496
.
35.
Ota
,
T.
,
Asano
,
Y.
, and
Okawa
,
J. I.
,
1981
, “
Reattachment Length and Transition of the Separated Flow Over Blunt Flat Plates
,”
Bull. JSME
,
24
(
192
), pp.
941
947
.
36.
Djilali
,
N.
,
Gartshore
,
I. S.
, and
Salcudean
,
M.
,
1991
, “
Turbulent Flow Around a Bluff Rectangular Plate—Part 2: Numerical Predictions
,”
ASME J. Fluids Eng.
,
113
(
1
), pp.
60
67
.
37.
Tafti
,
D. K.
, and
Vanka
,
S. P.
,
1991
, “
A Numerical Study of Flow Separation and Reattachment on a Blunt Plate
,”
Phys. Fluids A
,
3
(
1749
), pp.
1749
1759
.
38.
Back
,
L. H.
, and
Roschke
,
E. J.
,
1972
, “
Shear-Layer Flow Regimes and Wave Instabilities and Reattachment Lengths Downstream of an Abrupt Circular Channel Expansion
,”
ASME Appl. Mech.
,
39
(
3
), pp.
677
681
.
39.
Iribarne
,
A.
,
Frantisak
,
F.
,
Hummel
,
R.
, and
Smith
,
J.
,
1972
, “
An Experimental Study of Instabilities and Other Flow Properties of a Laminar Pipe Jet
,”
AIChE J.
,
18
(
4
), pp.
689
698
.
40.
Macagno
,
E.
, and
Hung
,
T. K.
,
1967
, “
Computational and Experimental Study of a Captive Annular Eddy
,”
J. Fluid Mech.
,
28
(
1
), pp.
43
64
.
41.
Pak
,
B.
,
Cho
,
Y. I.
, and
Choi
,
S. U. S.
,
1990
, “
Separation and Reattachment of Non-Newtonian Fluid Flows in a Sudden Expansion Pipe
,”
J. Non-Newtonian Fluid Mech.
,
37
(
2–3
), pp.
175
199
.
42.
Latornell
,
D. J.
, and
Pollard
,
A.
,
1986
, “
Some Observations on the Evolution of Shear Layer Instabilities in Laminar Flow Through Axisymmetric Sudden Expansions
,”
Phys. Fluids
,
29
(
9
), pp.
2828
2835
.
43.
Drikakis
,
D.
, and
Papadopoulos
,
G.
,
1996
, “
Experimental and Numerical Investigation of Laminar-to-Transitional Pipe Flow Past a Sudden-Expansion
,” Proceedings of the ASME Fluids Engineering Division Summer Meeting, San Diego, CA, July 7–11, pp. 679–684.
44.
Khezzar
,
L.
,
Whitelaw
,
J. H.
, and
Yianneskis
,
M.
,
1985
, “
An Experimental Study of Round Sudden Expansion Flows
,”
Fifth Symposium on Turbulent Shear Flows
, Ithaca, NY, Aug. 7–9, pp.
5.25
5.30
.
45.
Lekakis
,
I.
,
Durst
,
F.
, and
Sender
,
J.
,
1994
, “
LDA Measurements in the Near-Wall Region of an Axisymmetric Sudden Expansion
,”
Seventh International Symposium on Applications of Laser Techniques to Fluid Mechanics
, Lisbon, Portugal, pp. 11–14.
46.
Devenport
,
W. J.
, and
Sutton
,
E. P.
,
1993
, “
An Experimental Study of Two Flows Through an Axisymmetric Sudden Expansion
,”
Exp. Fluids
,
14
(
6
), pp.
423
432
.
47.
Stieglmeier
,
M.
,
Tropea
,
C.
,
Weiser
,
N.
, and
Nitsche
,
W.
,
1992
, “
Experimental Investigation of the Flow Through Axisymmetric Expansions
,”
ASME J. Fluids Eng.
,
111
, pp.
464
471
.
48.
Tinney
,
C. E.
,
Glauser
,
M. N.
,
Eaton
,
E. L.
, and
Taylor
,
J. A.
,
2006
, “
Low-Dimensional Azimuthal Characteristics of Suddenly Expanding Axisymmetric Flows
,”
J. Fluid Mech.
,
567
, pp.
141
155
.
49.
So
,
R. M. C.
,
1987
, “
Inlet Centerline Turbulence Effects on Reattachment Length in Axisymmetric Sudden-Expansion Flows
,”
Exp. Fluids
,
5
(
6
), pp.
424
426
.
You do not currently have access to this content.