Mechanism of particle separation in a cyclone separator is fully clarified by one-way coupled numerical simulations of large eddy simulation and particle tracking. The former resolves all the important vortical structures, while the latter inputs the computed flow fields and tracks trajectories of particles by considering Stokes drag as well as gravity. The computed axial and tangential velocities of the swirl flow in a cyclone compare well with the ones measured by particle image velocimetry (PIV). The precession frequency of the vortex rope computed for Stairmand cyclone also matches with the one measured by Darksen et al. The predicted collection efficiencies reasonably agree well with the measured equivalents for two cylindrical cyclones with different diameters and inflow conditions. Detailed investigations on the simulated vortical structures in the test cyclones and predicted trajectories of the particles have revealed that there are three major paths of trajectories for those particles that are not collected and exhausted from the cyclone. More than half of the exhausted particles are trapped by longitudinal vortices formed in the periphery of the vortex rope. Namely, the precession motion of the vortex rope generates a number of longitudinal vortices at its periphery, which trap particles and move them into the region of the upward swirl.

References

1.
Cortés
,
C.
, and
Gil
,
A.
,
2007
, “
Modeling the Gas and Particle Flow Inside Cyclone Separators
,”
Prog. Energy Combust. Sci.
,
33
(
5
), pp.
409
452
.
2.
Hoffmann
,
A. C.
, and
Stein
,
L. E.
,
2008
,
Gas Cyclones and Swirl Tubes
,
Springer-Verlag GmbH
,
Berlin
.
3.
Alexander
,
R.
, McK.,
1949
, “
Fundamentals of Cyclone Design and Operation
,”
Proc. Australas. Inst. Min. Metall.
,
152
(
3
), pp.
203
228
.http://www.onemine.org/document/abstract.cfm?docid=198428&title=Fundamentals-of-Cyclone-Design-and-Operation
4.
Ter Linden
,
A. J.
,
1949
, “
Investigations Into Cyclone Dust Collectors
,”
Proc. Inst. Mech. Eng.
,
160
(
1
), pp.
233
251
.
5.
Hoffmann
,
A. C.
,
de Groot
,
M.
,
Peng
,
W.
,
Dries
,
H. W. A.
, and
Kater
,
J.
,
2001
, “
Advantages and Risks in Increasing Cyclone Separator Length
,”
AIChE J.
,
47
(
11
), pp.
2452
2460
.
6.
Heumann
,
W. L.
,
1991
, “
Cyclone Separators: A Family Affair
,”
Chem. Eng.
,
98
, pp.
118
123
.http://cdn2.hubspot.net/hubfs/1546095/pdf/Cyclone_Separators_Family_Affair.pdf
7.
Peng
,
W.
,
Hoffmann
,
A. C.
,
Dries
,
H. W. A.
,
Regelink
,
M. A.
, and
Stein
,
L. E.
,
2005
, “
Experimental Study of the Vortex End in Centrifugal Separators: The Nature of the Vortex End
,”
Chem. Eng. Sci.
,
60
(
24
), pp.
6919
6928
.
8.
Derksen
,
J. J.
, and
Van den Akker
,
H. E. A.
,
2000
, “
Simulation of Vortex Core Precession in a Reverse-Flow Cyclone
,”
AIChE J.
,
46
(
7
), pp.
1317
1330
.
9.
Derksen
,
J. J.
,
van den Akker
,
H. E. A.
, and
Sundaresan
,
S.
,
2008
, “
Two-Way Coupled Large-Eddy Simulations of the Gas-Solid Flow in Cyclone Separators
,”
AIChE J.
,
54
(
4
), pp.
872
885
.
10.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids
,
3
(7), pp.
1760
1765
.
11.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids
,
4
(3), pp.
633
635
.
12.
Kato
,
C.
,
Kaiho
,
M.
, and
Manabe
,
A.
,
2003
, “
An Overset Finite-Element Large-Eddy Simulation Method With Applications to Turbomachinery and Aeroacoustics
,”
ASME J. Appl. Mech.
,
70
(
1
), pp.
32
43
.
13.
Kurose
,
R.
,
Desjardins
,
O.
,
Nakamura
,
M.
,
Akamatsu
,
F.
, and
Pitsch
,
H.
,
2004
, “
Numerical Simulation of Spray Flames
,” Center for Turbulence Research Annual Research Briefs 2004, pp.
269
280
.
14.
Kurose
,
R.
, and
Komori
,
S.
,
1999
, “
Drag and Lift Forces on a Rotating Sphere in a Linear Shear Flow
,”
J. Fluid Mech.
,
384
, pp.
183
206
.
15.
Scheimpflug
,
T.
,
1904
, “
Improved Method and Apparatus for the Systematic Alteration or Distortion of Plane Pictures and Images by Means of Lenses and Mirrors for Photography and for Other Purposes
,” UK Patent No. GB1196.
16.
Zhengliang
,
L.
,
Ying
,
Z.
,
Lufei
,
J.
,
Jinyu
,
J.
, and
Qikai
,
Z.
,
2006
, “
Stereoscopic PIV Studies on the Swirling Flow Structure in a Gas Cyclone
,”
Chem. Eng. Sci.
,
61
(13), pp.
4252
4261
.
17.
Inagaki
,
M.
,
Murata
,
O.
,
Kondoh
,
T.
, and
Abe
,
K.
,
2002
, “
Numerical Prediction of Fluid-Resonant Oscillations at Low Mach Number
,”
AIAA J.
,
40
(
9
), pp.
1823
1829
.
18.
Stairmand
,
C. J.
,
1951
, “
The Design and Performance of Cyclone Separators
,”
Chem. Eng. Res. Des.
,
29
, pp.
356
383
.
19.
Derksen
,
J. J.
,
2003
, “
Separation Performance Predictions of a Stairmand High-Efficiency Cyclone
,”
AIChE J.
,
49
(
6
), pp.
1359
1371
.
You do not currently have access to this content.