Viscoelastic fluids are now becoming promising candidates of microheat exchangers’ working medium due to the occurrence of elastic instability and turbulence at microscale. This paper developed a sound solver for the heat transfer process of viscoelastic fluid flow at high Wi, and this solver can be used to design the multiple heat exchangers with viscoelastic fluids as working medium. The solver validation was conducted by simulating four fundamental benchmarks to assure the reliability of the established solver. After that, the solver was adopted to study the heat transfer process of viscoelastic fluid flow in a curvilinear channel, where apparent heat transfer enhancement (HTE) by viscoelastic fluid was achieved. The observed heat transfer enhancement was attributed to the occurrence of elastic turbulence which continuously mix the hot and cold fluids by the twisting and wiggling flow motions.

References

1.
Andhare
,
R. S.
,
Shooshtari
,
A.
,
Dessiatoun
,
S. V.
, and
Ohadi
,
M. M.
,
2016
, “
Heat Transfer and Pressure Drop Characteristics of a Flat Plate Manifold Microchannel Heat Exchanger in Counter Flow Configuration
,”
Appl. Therm. Eng.
,
96
, pp.
178
189
.
2.
Dang
,
M.
,
Hassan
,
I.
, and
Kim
,
S. I.
,
2008
, “
Numerically Investigating the Effects of Cross-Links in Scaled Microchannel Heat Sinks
,”
ASME J. Fluids Eng.
,
130
(
12
), p.
121103
.
3.
Mohammadi
,
M.
,
Jovanovic
,
G. N.
, and
Sharp
,
K. V.
,
2013
, “
Numerical Study of Flow Uniformity and Pressure Characteristics Within a Microchannel Array With Triangular Manifolds
,”
Comput. Chem. Eng.
,
52
(
10
), pp.
134
144
.
4.
Ryu
,
J. H.
,
Choi
,
D. H.
, and
Kim
,
S. J.
,
2003
, “
Three-Dimensional Numerical Optimization of a Manifold Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
46
(
9
), pp.
1553
1562
.
5.
Shen
,
S.
,
Xu
,
J. L.
,
Zhou
,
J. J.
, and
Chen
,
Y.
,
2006
, “
Flow and Heat Transfer in Microchannels With Rough Wall Surface
,”
Energy Convers. Manage.
,
47
(
11–12
), pp.
1311
1325
.
6.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron. Device Lett.
,
2
(
5
), pp.
126
129
.
7.
Xia
,
G.
,
Chai
,
L.
,
Wang
,
H.
,
Zhou
,
M.
, and
Cui
,
Z.
,
2011
, “
Optimum Thermal Design of Microchannel Heat Sink With Triangular Reentrant Cavities
,”
Appl. Therm. Eng.
,
31
(
6–7
), pp.
1208
1219
.
8.
Xie
,
G.
,
Shen
,
H.
, and
Wang
,
C.-C.
,
2015
, “
Parametric Study on Thermal Performance of Microchannel Heat Sinks With Internal Vertical Y-Shaped Bifurcations
,”
Int. J. Heat Mass Transfer
,
90
, pp.
948
958
.
9.
Xie
,
G.
,
Zhang
,
F.
,
Sundén
,
B.
, and
Zhang
,
W. H.
,
2014
, “
Constructal Design and Thermal Analysis of Microchannel Heat Sinks With Multistage Bifurcations in Single-Phase Liquid Flow
,”
Appl. Therm. Eng.
,
62
(
2
), pp.
791
802
.
10.
Xu
,
J. L.
,
Gan
,
Y. H.
,
Zhang
,
D. C.
, and
Li
,
X. H.
,
2005
, “
Microscale Heat Transfer Enhancement Using Thermal Boundary Layer Redeveloping Concept
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1662
1674
.
11.
Ammar
,
H.
,
Ould el Moctar
,
A.
,
Garnier
,
B.
, and
Peerhossaini
,
H.
,
2014
, “
Flow Pulsation and Geometry Effects on Mixing of Two Miscible Fluids in Microchannels
,”
ASME J. Fluids Eng.
,
136
(
12
), p.
121101
.
12.
Nishimura
,
T.
,
Morega
,
A. M.
, and
Kunitsugu
,
K.
,
1997
, “
Vortex Structure and Fluid Mixing in Pulsatile Flow Through Periodically Grooved Channels at Low Reynolds Numbers
,”
JSME Int. J.
,
40
(
3
), pp.
377
385
.
13.
Nishimura
,
T.
,
Oka
,
N.
,
Yoshinaka
,
Y.
, and
Kunitsugu
,
K.
,
2000
, “
Influence of Imposed Oscillatory Frequency on Mass Transfer Enhancement of Grooved Channels for Pulsatile Flow
,”
Int. J. Heat Mass Transfer
,
43
(
13
), pp.
2365
2374
.
14.
Bird
,
R. B.
,
1987
,
Dynamics of Polymeric Liquids
,
Wiley
,
New York
.
15.
Groisman
,
A.
, and
Steinberg
,
V.
,
2000
, “
Elastic Turbulence in a Polymer Solution Flow
,”
Nature
,
405
, pp.
53
55
.
16.
Hung
,
T.-C.
,
Yan
,
W.-M.
,
Wang
,
X.-D.
, and
Chang
,
C.-Y.
,
2012
, “
Heat Transfer Enhancement in Microchannel Heat Sinks Using Nanofluids
,”
Int. J. Heat Mass Transfer
,
55
(
9–10
), pp.
2559
2570
.
17.
Ibrahim
,
W.
, and
Shanker
,
B.
,
2012
, “
Boundary-Layer Flow and Heat Transfer of Nanofluid Over a Vertical Plate With Convective Surface Boundary Condition
,”
ASME J. Fluids Eng.
,
134
(
8
), p.
081203
.
18.
Kiyasatfar
,
M.
, and
Pourmahmoud
,
N.
,
2016
, “
Laminar MHD Flow and Heat Transfer of Power-Law Fluids in Square Microchannels
,”
Int. J. Therm. Sci.
,
99
, pp.
26
35
.
19.
Li
,
S.-N.
,
Zhang
,
H.-N.
,
Li
,
X.-B.
,
Li
,
Q.
,
Li
,
F.-C.
,
Qian
,
S.
, and
Sang
,
W. J.
,
2016
, “
Numerical Study on the Heat Transfer Performance of Non-Newtonian Fluid Flow in a Manifold Microchannel Heat Sink
,”
Appl. Therm. Eng.
,
115
, pp. 1213–1225.
20.
Nejat
,
A.
,
Mirzakhalili
,
E.
,
Aliakbari
,
A.
,
Niasar
,
M. S. F.
, and
Vahidkhah
,
K.
,
2012
, “
Non-Newtonian Power-Law Fluid Flow and Heat Transfer Computation Across a Pair of Confined Elliptical Cylinders in the Line Array
,”
J. Non-Newtonian Fluid Mech.
,
171–172
, pp.
67
82
.
21.
Pimenta
,
T. A.
, and
Campos
,
J. B. L. M.
,
2013
, “
Heat Transfer Coefficients From Newtonian and Non-Newtonian Fluids Flowing in Laminar Regime in a Helical Coil
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
676
690
.
22.
Chein
,
R.
, and
Huang
,
G.
,
2005
, “
Analysis of Microchannel Heat Sink Performance Using Nanofluids
,”
Appl. Therm. Eng.
,
25
(
17–18
), pp.
3104
3114
.
23.
Li
,
J.
,
Sheeran
,
P. S.
, and
Kleinstreuer
,
C.
,
2011
, “
Analysis of Multi-Layer Immiscible Fluid Flow in a Microchannel
,”
ASME J. Fluids Eng.
,
133
(
11
), p.
111202
.
24.
Groisman
,
A.
, and
Steinberg
,
V.
,
2004
, “
Elastic Turbulence in Curvilinear Flows of Polymer Solutions
,”
New J. Phys.
,
6
(
1
), p.
29
.
25.
Burghelea
,
T.
,
Segre
,
E.
, and
Steinberg
,
V.
,
2007
, “
Elastic Turbulence in von Karman Swirling Flow Between Two Disks
,”
Phys. Fluids
,
19
(
5
), p.
053104
.
26.
Li
,
F.-C.
,
Kinoshita
,
H.
,
Li
,
X.-B.
,
Oishi
,
M.
,
Fujii
,
T.
, and
Oshima
,
M.
,
2010
, “
Creation of Very-Low-Reynolds-Number Chaotic Fluid Motions in Microchannels Using Viscoelastic Surfactant Solution
,”
Exp. Therm. Fluid Sci.
,
34
(
1
), pp.
20
27
.
27.
Li
,
F.-C.
,
Zhang
,
H.-N.
,
Cao
,
Y.
,
Tomoaki
,
K.
,
Haruyuki
,
K.
, and
Marie
,
O.
,
2012
, “
A Purely Elastic Instability and Mixing Enhancement in a 3D Curvilinear Channel Flow
,”
Chin. Phys. Lett.
,
29
(
9
), p.
094704
.
28.
Zhang
,
H.-N.
,
Li
,
F.-C.
,
Cao
,
Y.
,
Tomoaki
,
K.
, and
Yu
,
B.
,
2013
, “
Direct Numerical Simulation of Elastic Turbulence and Its Mixing-Enhancement Effect in a Straight Channel Flow
,”
Chin. Phys. B
,
22
(
2
), p.
024703
.
29.
Zhang
,
H.-N.
,
Li
,
F.-C.
,
Li
,
X.-B.
,
Li
,
D.-Y.
,
Cai
,
W.-H.
, and
Yu
,
B.
,
2016
, “
Characteristics and Generation of Elastic Turbulence in a Three-Dimensional Parallel Plate Channel Using Direct Numerical Simulation
,”
Chin. Phys. B
,
25
(
9
), p.
094701
.
30.
Li
,
X.-B.
,
Oishi
,
M.
,
Matsuo
,
T.
,
Oshima
,
M.
, and
Li
,
F.-C.
,
2016
, “
Measurement of Viscoelastic Fluid Flow in the Curved Microchannel Using Digital Holographic Microscope and Polarized Camera
,”
ASME J. Fluids Eng.
,
138
(
9
), p.
091401
.
31.
Li
,
D.-Y.
,
Li
,
X.-B.
,
Zhang
,
H.-N.
,
Li
,
F.-C.
,
Qian
,
S.-Z.
, and
Joo
,
S. W.
,
2016
, “
Measuring Heat Transfer Performance of Viscoelastic Fluid Flow in Curved Microchannel Using Ti–Pt Film Temperature Sensor
,”
Exp. Therm. Fluid Sci.
,
77
, pp.
226
233
.
32.
Burghelea
,
T.
,
Segre
,
E.
,
Bar-Joseph
,
I.
,
Groisman
,
A.
, and
Steinberg
,
V.
,
2004
, “
Chaotic Flow and Efficient Mixing in a Microchannel With a Polymer Solution
,”
Phys. Rev., E
,
69
(
6 Pt. 2
), p.
066305
.
33.
Groisman
,
A.
, and
Steinberg
,
V.
,
2001
, “
Efficient Mixing at Low Reynolds Numbers Using Polymer Additives
,”
Nature
,
410
(
6831
), pp.
905
908
.
34.
Jun
,
Y.
, and
Steinberg
,
V.
,
2010
, “
Mixing of Passive Tracers in the Decay Batchelor Regime of a Channel Flow
,”
Phys. Fluids
,
22
(
12
), p.
123101
.
35.
Li
,
X.-B.
,
Zhang
,
H.-N.
,
Cao
,
Y.
,
Oshima
,
M.
, and
Li
,
F.-C.
,
2015
, “
Motion of Passive Scalar by Elasticity-Induced Instability in Curved Microchannel
,”
Adv. Mech. Eng.
,
6
, p.
734175
.
36.
Keunings
,
R.
,
1986
, “
On the High Weissenberg Number Problem
,”
J. Non-Newtonian Fluid Mech.
,
20
, pp.
209
226
.
37.
Guénette
,
R.
, and
Fortin
,
M.
,
1995
, “
A New Mixed Finite Element Method for Computing Viscoelastic Flows
,”
J. Non-Newtonian Fluid Mech.
,
60
(
1
), pp.
27
52
.
38.
Vaithianathan
,
T.
, and
Collins
,
L. R.
,
2003
, “
Numerical Approach to Simulating Turbulent Flow of a Viscoelastic Polymer Solution
,”
J. Comput. Phys.
,
187
(
1
), pp.
1
21
.
39.
Fattal
,
R.
, and
Kupferman
,
R.
,
2004
, “
Constitutive Laws for the Matrix-Logarithm of the Conformation Tensor
,”
J. Non-Newtonian Fluid Mech.
,
123
(
2–3
), pp.
281
285
.
40.
Afonso
,
A.
,
Oliveira
,
P. J.
,
Pinho
,
F. T.
, and
Alves
,
M. A.
,
2009
, “
The Log-Conformation Tensor Approach in the Finite-Volume Method Framework
,”
J. Non-Newtonian Fluid Mech.
,
157
(
1–2
), pp.
55
65
.
41.
Favero
,
J. L.
,
Secchi
,
A. R.
,
Cardozo
,
N. S. M.
, and
Jasak
,
H.
,
2010
, “
Viscoelastic Flow Analysis Using the Software OpenFOAM and Differential Constitutive Equations
,”
J. Non-Newtonian Fluid Mech.
,
165
(
23–24
), pp.
1625
1636
.
42.
Habla
,
F.
,
Tan
,
M. W.
,
Haßlberger
,
J.
, and
Hinrichsen
,
O.
,
2014
, “
Numerical Simulation of the Viscoelastic Flow in a Three-Dimensional Lid-Driven Cavity Using the Log-Conformation Reformulation in OpenFOAM®
,”
J. Non-Newtonian Fluid Mech.
,
212
, pp.
47
62
.
43.
Jensen
,
K. E.
,
Szabo
,
P.
, and
Okkels
,
F.
,
2015
, “
Implementation of the Log-Conformation Formulation for Two-Dimensional Viscoelastic Flow
,”
Comput. Sci.
,
223
, pp.
209
220
.https://arxiv.org/abs/1508.01041
44.
Fattal
,
R.
, and
Kupferman
,
R.
,
2005
, “
Time-Dependent Simulation of Viscoelastic Flows at High Weissenberg Number Using the Log-Conformation Representation
,”
J. Non-Newtonian Fluid Mech.
,
126
(
1
), pp.
23
37
.
45.
Comminal
,
R.
,
Spangenberg
,
J.
, and
Hattel
,
J. H.
,
2015
, “
Robust Simulations of Viscoelastic Flows at High Weissenberg Numbers With the Streamfunction/Log-Conformation Formulation
,”
J. Non-Newtonian Fluid Mech.
,
223
, pp.
37
61
.
46.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
1996
,
Fundamental of Heat and Mass Transfer
,
Wiley
,
New York
.
47.
Knechtges
,
P.
,
2015
, “
The Fully-Implicit Log-Conformation Formulation and Its Application to Three-Dimensional Flows
,”
J. Non-Newtonian Fluid Mech.
,
223
, pp.
209
220
.
48.
Cruz
,
F. A.
,
Poole
,
R. J.
,
Afonso
,
A. M.
,
Pinho
,
F. T.
,
Oliveira
,
P. J.
, and
Alves
,
M. A.
,
2014
, “
A New Viscoelastic Benchmark Flow: Stationary Bifurcation in a Cross-Slot
,”
J. Non-Newtonian Fluid Mech.
,
214
, pp.
57
68
.
49.
Miranda
,
A. I. P.
, and
Oliveira
,
P. J.
,
2010
, “
Start-Up Times in Viscoelastic Channel and Pipe Flows
,”
Korea-Australia Rheol. J.
,
22
(
1
), pp.
65
73
.http://webx.ubi.pt/~pjpo/ri62.pdf
50.
Abed
,
W. M.
,
Whalley
,
R. D.
,
Dennis
,
D. J. C.
, and
Poole
,
R. J.
,
2016
, “
Experimental Investigation of the Impact of Elastic Turbulence on Heat Transfer in a Serpentine Channel
,”
J. Non-Newton. Fluid Mech.
,
231
, pp.
68
78
.
51.
Li, D.-Y., Zhang, H., Cheng, J.-P., Li, X.-B., Li, F. C.,
Qian
,
S.
, and Joo, S. W.,
2017
, “
Numerical Simulation of Heat Transfer Enhancement by Elastic Turbulence in a Curvy Channel
,”
Microfluid. Nanofluid.
,
21
, p. 25.
52.
Kraichnan
,
R. H.
,
1968
, “
Small-Scale Structure of a Scalar Field Convected by Turbulence
,”
Phys. Fluids
,
11
(
5
), pp.
945
953
.
You do not currently have access to this content.