Cavitation within regions of flow separation appears in drifting vortices. A two-part computational method is employed for prediction of cavitation inception number there. The first part is an analysis of the average flow in separation regions without consideration of an impact of vortices. The second part is an analysis of equilibrium of the bubble within the core of a vortex located in the turbulent flow of known average characteristics. Computed cavitation inception numbers for axisymmetric flows are in the good agreement with the known experimental data.
Issue Section:
Flows in Complex Systems
References
1.
Amromin
, E. L.
, 2002
, “Scale Effect of Cavitation Inception on a 2D Eppler Hydrofoil
,” ASME J. Fluids Eng.
, 124
(1
), pp. 186
–193
.2.
Coutier-Delgosha
, O.
, Deniset
, F.
, Astolfi
, J. A.
, and Leroux
, J.-B.
, 2007
, “Numerical Prediction of Cavitating Flow on a Two Dimensional Symmetrical Hydrofoil and Comparison to Experiments
,” ASME J. Fluids Eng.
, 129
(3
), pp. 279
–292
.3.
Amromin
, E. L.
, 2014
, “Development and Validation of CFD Models for Initial Stages of Cavitation
,” ASME J. Fluids Eng.
, 136
(8
), p. 081303
.4.
Katz
, J.
, 1984
, “Cavitation Phenomena Within Regions of Flow Separation
,” J. Fluid Mech.
, 140
, pp. 397
–436
.5.
Farrell
, K. J.
, 2003
, “Eulerian/Lagrangian Analysis for the Prediction of Cavitation Inception
,” ASME J. Fluids Eng.
, 125
(1
), pp. 46
–52
.6.
Ma
, J.
, Hsiao
, C.-T.
, and Chahine
, G. L.
, 2015
, “Shared-Memory Parallelization for Two-Way Coupled Euler–Lagrange Modeling of Cavitating Bubbly Flows
,” ASME J. Fluids Eng.
, 137
(12
), p. 121106
.7.
Lindgren
, H.
, and Johnson
, C. A.
, 1966
, “Cavitation Inception on Head Form ITTC: Comparative Experiments
,” 11th International Towing Tank Conference
(ITTC), Tokyo, Japan, Oct. 10–20, pp. 219–232.8.
Arakeri
, V. H.
, and Acosta
, A. J.
, 1973
, “Viscous Effects in the on Cavitation Inception of Axisymmetric Bodies
,” ASME J. Fluids Eng.
, 95
(4
), pp. 519
–527
.9.
Arndt
, R. E. A.
, 1978
, “Investigation of the Effect of Dissolved Gas and Free Nuclei on Cavitation and Noise in the Wake of a Sharp Edge Disk
,” Joint IAHR/ASME/ASCE Symposium on Design and Operation of Fluid Machinery
, Fort Collins, CO, June 12–14, pp. 543
–555
.10.
Hsiao
, C.-T.
, Chahine
, G. L.
, and Liu
, H.-L.
, 2003
, “Scale Effect on Prediction of Cavitation Inception in a Line Vortex Flow
,” ASME J. Fluids Eng.
, 125
(1
), pp. 53
–60
.11.
Amromin
, E. L.
, 2013
, “Vehicle Drag Reduction With Control of Critical Reynolds Number
,” ASME J. Fluids Eng.
, 135
(10
), p. 101105
.12.
Amromin
, E. L.
, 2016
, “Analysis of Cavitation Inception and Desinence Behind Surface Irregularities
,” Phys. Fluids
, 28
(7
), p. 075106
.13.
Ramamurthy
, A. S.
, Balanchandar
, R.
, and Govinda Ram
, H. S.
, 1991
, “Some Characteristics of Flow Past Backward Facing Steps Including Cavitation Effects
,” ASME J. Fluids Eng.
, 113
(2
), pp. 278
–284
.14.
Castillo
, L.
, Wang
, X.
, and George
, W. K.
, 2004
, “Separation Criterion for Turbulent Boundary Layers Via Similarity Analysis
,” ASME J. Fluids Eng.
, 126
(3
), pp. 297
–304
.15.
Cebeci
, T.
, and Bradshaw
, P.
, 1984
, Physical and Computational Aspects of Convective Head Transfer
, Springer-Verlag
, New York
.16.
Simpson
, R. L.
, Chew
, Y.-T.
, and Shivaprasad
, B. G.
, 1981
, “The Structure of a Separating Turbulent Boundary Layer—Part 1: Mean Flow and Reynolds Stresses
,” J. Fluid Mech.
, 113
, pp. 23
–51
.17.
Jovic
, S.
, and Driver
, D.
, 1995
, “Reynolds Number Effect on the Skin Friction in Separated Flows Behind a Backward-Facing Step
,” Exp. Fluids
, 18
(6
), pp. 464
–467
.18.
O'Malley
, K.
, Fitt
, A. D.
, Jones
, T. V.
, Ockendon
, J. R.
, and Wilmott
, P.
, 1991
, “Model for High-Reynolds Number Flow Down a Step
,” J. Fluid Mech.
, 222
, pp. 139
–155
.19.
Amromin
, E. L.
, 2013
, “Analysis of Airfoil Stall With a Modification of Viscous–Inviscid Interaction Concept
,” ASME J. Fluids Eng.
, 135
(5
), p. 051105
.20.
Wade
, R. B.
, and Acosta
, A. J.
, 1966
, “Experimental Observation of the Flow Past a Plano-Convex Hydrofoil
,” ASME J. Basic Eng.
, 88
(1
), pp. 273
–283
.21.
Gindroz
, B.
, and Billet
, M. L.
, 1998
, “Influence of the Nuclei on the Cavitation Inception for Different Types of Cavitation on Ship Propellers
,” ASME J. Fluids Eng.
, 120
(1
), pp. 171
–178
.22.
Arndt
, R. E. A.
, Arakeri
, V. H.
, and Higuchi
, H.
, 1991
, “Some Observations of Tip-Vortex Cavitation
,” J. Fluid Mech.
, 229
, pp. 269
–289
.23.
Castro
, E.
, Crespo
, A.
, Manuel
, F.
, and Fruman
, D. H. J.
, 1997
, “Equilibrium of Ventilated Cavities in Tip Vortices
,” ASME J. Fluids Eng.
, 119
(4
), pp. 759
–767
.24.
Amromin
, E. L.
, 2007
, “Analysis of Vortex Core in Steady Turbulent Flow
,” Phys. Fluids
, 19
(11
), p. 118108
.25.
Arndt
, R. E. A.
, Amromin
, E. L.
, and Hambleton
, J.
, 2009
, “Cavitation Inception in the Wake of a Jet-Driven Body
,” ASME J. Fluids Eng.
, 131
(11
), p. 111302
.26.
Arakeri
, V. H.
, and Ramarajan
, V.
, 1981
, “Inception of Cavitation From a Backward Facing Step
,” ASME J. Fluids Eng.
, 103
(2
), pp. 288
–293
.27.
Kwon
, O. K.
, and Pletcher
, R.
, 1986
, “A Viscous–Inviscid Interaction Procedure
,” ASME J. Fluids Eng.
, 108
(1
), pp. 64
–75
.28.
Dejoan
, A.
, Jang
, Y.-J.
, and Leschziner
, M. A.
, 2005
, “Comparative LES and Unsteady RANS Computations for a Periodically-Perturbed Separated Flow Over a Backward-Facing Step
,” ASME J. Fluids Eng.
, 127
(5
), pp. 872
–878
.29.
Wang
, X.
, and Walters
, K.
, 2012
, “Computational Analysis of Marine-Propeller Performance Using Transition-Sensitive Turbulence Modeling
,” ASME J. Fluids Eng.
, 134
(7
), p. 071107
.Copyright © 2018 by ASME
You do not currently have access to this content.