A Reynolds-averaged Navier–Stokes (RANS) computational study was conducted to investigate the effect of various variable camber continuous trailing edge flap (VCCTEF) configurations on the lift and drag of a NASA generic transport model (GTM) wing section. Out of the five two-dimensional (2D) VCCTEF configurations considered with varying camber in the three-segment flap region, with a total deflection of 6 deg, the best stall performance was exhibited by the circular and parabolic arc camber flaps. Both circular and parabolic arc flaps give similar lift performance, with the circular arc yielding a higher lift coefficient and parabolic arc resulting in the lowest drag and hence the best L/D performance at design Cl. Analysis of results based on linear theory shows excellent agreement between computed and theoretical incremental lift.

References

1.
Nguyen
,
N.
,
2010
, “
Elastically Shaped Future Air Vehicle Concept
,” NASA Innovation Fund Award 2010 Report, Submitted to NASA Innovative Partnerships Program, NASA Ames Research Center, Moffett Field, CA, Report No.
ARC-E-DAA-TN3743
.https://www.nasa.gov/pdf/499930main_arc_nguyen_elastically_shaped.pdf
2.
Nguyen
,
N.
,
Trinh
,
K.
,
Reynolds
,
K.
,
Kless
,
J.
,
Aftosmis
,
M.
,
Urnes
,
J.
, and
Ippolito
,
C.
,
2013
, “
Elastically Shaped Wing Optimization and Aircraft Concept for Improved Cruise Efficiency
,”
AIAA
Paper No. AIAA 2013-0141.
3.
Urnes, J., Sr.,
2012
, “
Development of Variable Camber Continuous Trailing Edge Flap System
,” Boeing, Chicago, IL, Report No.
2012X0015
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120012008.pdf
4.
Urnes
,
J.
,
Nguyen
,
N.
,
Ippolito
,
C.
,
Totah
,
J.
,
Trinh
,
K.
, and
Ting
,
E.
,
2013
, “
A Mission Adaptive Variable Camber Flap Control System to Optimize High Lift and Cruise Lift to Drag Ratios of Future N+3 Transport Aircraft
,”
AIAA
Paper No. AIAA 2013-0214.
5.
Jordan
,
T. L.
,
Langford
,
W. M.
,
Belcastro
,
C. M.
,
Foster
,
J. M.
,
Shah
,
G. H.
,
Howland
,
G.
, and
Kidd
,
R.
,
2004
, “
Development of a Dynamically Scaled Generic Transport Model Testbed for Flight Research Experiments
,” NASA Langley Research Center, Hampton, VA, Report No.
23-728-30-33
.https://ntrs.nasa.gov/search.jsp?R=20040085988
6.
Kaul
,
U. K.
, and
Nguyen
,
N. T.
,
2015
, “
A 3-D Computational Study of a Variable Camber Continuous Trailing Edge Flap (VCCTEF) Spanwise Segment
,”
AIAA
Paper No. AIAA 2015-2422.
7.
Dean Ninian
,
D.
, and
Dakka
,
S. M.
,
2017
, “
Design, Development and Testing of Shape Shifting Wing Model
,”
Aerospace
,
4
(
4
), p.
52
.
8.
Gamble
,
L. L.
,
Pankonien
,
A. M.
, and
Inman
,
D. J.
,
2017
, “
Stall Recovery of a Morphing Wing Via Extended Nonlinear Lifting-Line Theory
,”
AIAA J.
,
55
(
9
), pp.
2956
2963
.
9.
Chae
,
E. J.
,
Moosavian
,
A.
,
Pankonien
,
A. M.
, and
Inman
,
D. J.
, “
A Comparative Study of a Morphing Wing
,”
ASME
Paper No. SMASIS2017-3833.
10.
Alsulami
,
A.
,
Akbar
,
M.
, and
Joe
,
W.
, “
A Comparative Study: Aerodynamics of Morphed Airfoils Using CFD Techniques and Analytical Tools
,”
ASME
Paper No. IMECE2017-72269.
11.
Weishuang
,
L.
,
Yun
,
T.
, and
Peiqing
,
L.
,
2017
, “
Aerodynamic Optimization and Mechanism Design of Flexible Variable Camber Trailing-Edge Flap
,”
Chin. J. Aeronaut.
,
30
(
3
), pp.
988
1003
.
12.
Lebofsky
,
S.
,
Ting
,
E.
, and
Nguyen
,
N.
,
2015
, “
Multidisciplinary Drag Optimization of Reduced Stiffness Flexible Wing Aircraft With Variable Camber Continuous Trailing Edge Flap
,”
AIAA
Paper No. AIAA 2015-1408.
13.
Joo
,
J. J.
,
Mark
,
C. R.
,
Zientarski
,
L.
, and
Culler
,
A. J.
,
2015
, “
Variable Camber Compliant Wing—Design
,”
AIAA
Paper No. AIAA 2015-1050.
14.
Marks
,
C. R.
,
Zientarski
,
L.
,
Culler
,
A.
,
Hagen
,
B.
,
Smyers
,
B.
, and
Joo
,
J. J.
,
2015
, “
Variable Camber Compliant Wing—Wind Tunnel Testing
,”
AIAA
Paper No. AIAA 2015-1051.
15.
Miller
,
S.
, and
Rumpfkeil
,
M. P.
, “
Fluid-Structure Interaction of a Variable Camber Compliant Wing
,”
AIAA
Paper No. AIAA 2015-1235.
16.
Matteo
,
N. D.
,
Guo
,
S.
, and
Morishima
,
R.
,
2012
, “
Optimization of Leading Edge and Flap With Actuation System for a Variable Camber Wing
,”
AIAA
Paper No. AIAA 2012-1609.
17.
Buning, P. G.,
2016
, “
NASA OVERFLOW Overset Grid CFD Flow Solver
,” NASA Langley Research Center, Hampton, VA, accessed May 7, 2018, https://overflow.larc.nasa.gov
18.
Buning
,
P. G.
,
Gomez
,
R. J.
, and
Scallion
,
W. I.
,
2004
, “
CFD Approaches for Simulation of Wing-Body Stage Separation
,”
AIAA
Paper No. 2004-4838.
19.
Kandula
,
M.
, and
Buning
,
P. G.
,
1994
, “
Implementation of LU-SGS Algorithm and Roe Upwinding Scheme in OVERFLOW Thin-Layer Navier-Stokes Code
,”
AIAA
Paper No. 94-2357.
20.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA
Paper No. AIAA 92-0439.
21.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
22.
Harris
,
C. D.
,
1981
, “
Two-Dimensional Aerodynamic Characteristics of the NACA0012 Airfoil in the Langley 8-Foot Transonic Pressure Tunnel
,” NASA Langley Research Center, Hampton, VA, Report No.
NASA TM-81927
.https://ntrs.nasa.gov/search.jsp?R=19810014503
23.
Maksymiuk
,
C. M.
, and
Pulliam
,
T. H.
,
1987
, “
Viscous Transonic Airfoil Workshop Results Using ARC2D
,”
AIAA
Paper No. 87-0415.
24.
Chan
,
W. M.
,
2011
, “
Developments in Strategies and Software Tools for Overset Structured Grid Generation and Connectivity
,”
AIAA
Paper No. 2011-3051.
25.
Beam
,
R.
, and
Warming
,
R. F.
,
1976
, “
An Implicit Finite-Difference Algorithm for Hyperbolic Systems in Conservation Law Form
,”
J. Comp. Phys.
,
22
(
1
), pp.
87
110
.
26.
Baldwin
,
B. S.
, and
Lomax
,
H.
,
1978
, “
Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows
,”
AlAA
Paper No. 78-257.
27.
Viviand
,
H.
,
1974
, “
Conservative Forms of Gas Dynamic Equations in Curvilinear Coordinate Systems
,”
La Rech. Aerospatiale
,
1
, pp. 65–68http://adsabs.harvard.edu/abs/1975aere.bull..153V.
28.
Vinokur
,
M.
,
1974
, “
Conservation Equations of Gas Dynamics in Curvilinear Coordinate Systems
,”
J. Comput. Phys.
,
14
(
2
), pp.
105
125
.
29.
Rumsey
,
C.
, 2018, “
Standard Spalart-Allmaras One-Equation Model (SA)
,” NASA Langley Research Center, Hampton, VA, accessed May 7, 2018, https://turbmodels.larc.nasa.gov
30.
Spalart
,
P. R.
, and
Rumsey
,
C. L.
,
2007
, “
Effective Inflow Conditions for Turbulence Models in Aerodynamic Calculations
,”
AIAA J.
,
45
(
10
), pp.
2544
2553
.
31.
Kaul
,
U. K.
, and
Ahmad
,
J.
,
2012
, “
Skin-Friction Predictions on a Hovering Tilt-Rotor Blade
,”
J. Aircr.
,
49
(
6
), pp.
1726
1738
.
32.
Kaul
,
U. K.
,
2012
, “
Effect of Inflow Boundary Conditions on Hovering Tilt-Rotor Flows
,”
Seventh International Conference on Computational Fluid Dynamics (ICCFD7)
, Big Island, HI, July 9–13, Paper No.
ICCFD7-2012-3504
.https://www.nas.nasa.gov/assets/pdf/papers/ICCFD7-3504_abstract.pdf
33.
Kaul
,
U. K.
,
2011
, “
Effect of Inflow Boundary Conditions on the Turbulence Solution in Internal Flows
,”
AIAA J.
,
49
(
2
), pp.
426
432
.
34.
Boukenkoul
,
M. A.
,
Li
,
F.-C.
,
Chen
,
W.-L.
, and
Zhang
,
H.-N.
,
2017
, “
Lift Generation and Moving-Wall Flow Control Over a Low Aspect Ratio Airfoil
,”
ASME J. Fluids Eng.
,
140
(1), p. 011104.
35.
Poels
,
A.
,
Rudmin
,
D.
,
Benaissa
,
A.
, and
Poirel
,
D.
,
2015
, “
Localization of Flow Separation and Transition Over a Pitching NACA0012 Airfoil at Transitional Reynolds Numbers Using Hot Films
,”
ASME J. Fluids Eng.
,
137
(
12
), p.
124501
.
36.
Sunada
,
S.
,
Sakaguchi
,
A.
, and
Kawachi
,
K.
,
1997
, “
Airfoil Section Characteristics at a Low Reynolds Number
,”
ASME J. Fluids Eng.
,
119
(
1
), pp.
129
135
.
37.
Kaul
,
U. K.
, and
Nguyen
,
N. T.
,
2016
, “
Lift Optimization Study of a Multi-Element Three-Segment Variable Camber Airfoil
,”
AIAA
Paper No. 2016-3569.
38.
Emanuel
,
G.
,
Analytical Fluid Dynamics
, 3rd ed., CRC Press, Boca Raton, FL, p. 122.
39.
Cook
,
A.
, and
Cabot
,
W.
,
2004
, “
A High-Wavenumber Viscosity for High-Resolution Numerical Methods
,”
J. Comput. Phys.
,
195
(
2
), pp.
594
601
.
40.
Cook
,
A.
, and
Cabot
,
W.
,
2005
, “
Hyperviscosity for Shock-Turbulence Interactions
,”
J. Comput. Phys.
,
203
(
2
), pp.
379
385
.
41.
Kaul
,
U. K.
,
2013
, “
Stability Enhanced High-Order Hyperviscosity-Based Shock Capturing Algorithm
,”
AIAA J.
,
51
(
6
), pp. 1516–1521.
42.
Anderson
,
J. D.
,
2011
,
Fundamentals of Aerodynamics
,
McGraw-Hill
, New York, pp.
289
310
.
You do not currently have access to this content.