An efficient large-eddy simulation (LES) approach is investigated for laminar-to-turbulent transition in boundary layers. This approach incorporates the boundary-layer stability theory. Primary instability and subharmonic perturbations determined by the boundary-layer stability theory are assigned as forcing at the inlet of the LES computational domain. This LES approach reproduces the spatial development of instabilities in the boundary layer, as observed in wind tunnel experiments. Detailed linear growth and nonlinear interactions that lead to the H-type breakdown are well captured and compared well to previous direct numerical simulation (DNS). Requirements in the spatial resolution in the transition region are investigated with connections to the resolution in turbulent boundary layers. It is shown that the subgrid model used in this study is apparently dormant in the overall transitional region, allowing the right level of the growth of small-amplitude instabilities and their nonlinear interactions. The subgrid model becomes active near the end of the transition where the length scales of high-order instabilities become smaller in size compared to the given grid resolution. Current results demonstrate the benefit of the boundary-layer forcing method for the computational cost reduction.

References

1.
Morkovin
,
M. V.
,
1988
, “
Recent Insights Into Instability and Transition to Turbulence in Open-Flow Systems
,” NASA Langley Research Center, Hampton, VA, No.
NASA-CR-181693
.https://ntrs.nasa.gov/search.jsp?R=19880020695
2.
Morkovin
,
M. V.
, and
Reshotko
,
E.
,
1990
, “
Dialogue on Progress and Issues in Stability and Transition Research
,”
Laminar-Turbulent Transition
,
Springer
,
Berlin
, pp.
3
29
.
3.
Kachanov
,
Y. S.
,
1994
, “
Physical Mechanisms of Laminar-Boundary-Layer Transition
,”
Annu. Rev. Fluid Mech.
,
26
(
1
), pp.
411
482
.
4.
Reshotko
,
E.
,
1976
, “
Boundary-Layer Stability and Transition
,”
Annu. Rev. Fluid Mech.
,
8
(
1
), pp.
311
349
.
5.
Goldstein
,
M. E.
, and
Hultgren
,
L. S.
,
1989
, “
Boundary-Layer Receptivity to Long-Wave Free-Stream Disturbances
,”
Annu. Rev. Fluid Mech.
,
21
(
1
), pp.
137
166
.
6.
Kerschen
,
E. J.
,
Choudhari
,
M.
, and
Heinrich
,
R. A.
,
1990
, “
Generation of Boundary Layer Instability Waves by Acoustic and Vortical Free-Stream Disturbances
,”
Laminar-Turbulent Transition
,
Springer
,
Berlin
, pp.
477
488
.
7.
Saric
,
W. S.
,
Reed
,
H. L.
, and
Kerschen
,
E. J.
,
2002
, “
Boundary-Layer Receptivity to Freestream Disturbances
,”
Annu. Rev. Fluid Mech.
,
34
(
1
), pp.
291
319
.
8.
Mack
,
L. M.
,
1975
, “
A Numerical Method for the Prediction of High-Speed Boundary-Layer Transition Using Linear Theory
,” NASA Langley Research Center, Hampton, VA, Technical Report No.
76N10012
.https://ntrs.nasa.gov/search.jsp?R=19760002924
9.
Reed
,
H. L.
, and
Saric
,
W. S.
,
1989
, “
Stability of Three-Dimensional Boundary Layers
,”
Annu. Rev. Fluid Mech.
,
21
(
1
), pp.
235
284
.
10.
Herbert
,
T.
,
1988
, “
Secondary Instability of Boundary Layers
,”
Annu. Rev. Fluid Mech.
,
20
(
1
), pp.
487
526
.
11.
Saric
,
W. S.
,
Reed
,
H. L.
, and
White
,
E. B.
,
2003
, “
Stability and Transition of Three-Dimensional Boundary Layers
,”
Annu. Rev. Fluid Mech.
,
35
(
1
), pp.
413
440
.
12.
Morkovin
,
M. V.
,
1969
, “
On the Many Faces of Transition
,”
Viscous Drag Reduction
,
Springer
, Boston, MA, pp.
1
31
.
13.
Durbin
,
P.
, and
Wu
,
X.
,
2007
, “
Transition Beneath Vortical Disturbances
,”
Annu. Rev. Fluid Mech.
,
39
(
1
), pp.
107
128
.
14.
Herbert
,
T.
,
1984
, “
Second Instability of Shear Flows
,” Special Course on Stability and Transition of Laminar Flow, Advisory Group for Aerospace Research & Development, North Atlantic Treaty Organization, Neuilly-sur-Seine, France, AGARD Report No. 709.
15.
Kachanov
,
Y. S.
,
Kozlov
,
V. V.
, and
Levchenko
,
V. Y.
,
1977
, “
Nonlinear Development of a Wave in a Boundary Layer
,”
Fluid Dyn.
,
12
(
3
), pp.
383
390
.
16.
Kachanov
,
Y. S.
, and
Levchenko
,
V. Y.
,
1984
, “
The Resonant Interaction of Disturbances at Laminar-Turbulent Transition in a Boundary Layer
,”
J. Fluid Mech.
,
138
(
1
), pp.
209
247
.
17.
Klebanoff
,
P. S.
, and
Tidstrom
,
K. D.
,
1959
, “
Evolution of Amplified Waves Leading to Transition in a Boundary Layer With Zero Pressure Gradient
,” National Aeronautics and Space Administration, Washington, DC, Technical Note No.
NASA-TN-D-195
.https://archive.org/details/nasa_techdoc_19890068568
18.
Klebanoff
,
P. S.
,
Tidstrom
,
K. D.
, and
Sargent
,
L. M.
,
1962
, “
The Three-Dimensional Nature of Boundary-Layer Instability
,”
J. Fluid Mech.
,
12
(
1
), pp.
1
34
.
19.
Herbert
,
T.
,
Bertolotti
,
F. P.
, and
Santos
,
G. R.
,
1987
, “
Floquet Analysis of Secondary Instability in Shear Flows
,”
Stability of Time Dependent and Spatially Varying Flows
,
Springer
,
New York
, pp.
43
57
.
20.
Herbert
,
T.
,
1997
, “
Parabolized Stability Equations
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
245
283
.
21.
Chang
,
C.-L.
,
Malik
,
M.
,
Erlebacher
,
G.
, and
Hussaini
,
M.
,
1991
, “
Compressible Stability of Growing Boundary Layers Using Parabolized Stability Equations
,”
AIAA
Paper No. 1991-1636.
22.
Joslin
,
R. D.
,
Streett
,
C. L.
, and
Chang
,
C.-L.
,
1993
, “
Spatial Direct Numerical Simulation of Boundary-Layer Transition Mechanisms: Validation of PSE Theory
,”
Theor. Comput. Fluid Dyn.
,
4
(
6
), pp.
271
288
.
23.
Esfahanian
,
V.
,
Hejranfar
,
K.
, and
Sabetghadam
,
F.
,
2001
, “
Linear and Nonlinear PSE for Stability Analysis of the Blasius Boundary Layer Using Compact Scheme
,”
ASME J. Fluids Eng.
,
123
(
3
), pp.
545
550
.
24.
Fasel
,
H. F.
,
Rist
,
U.
, and
Konzelmann
,
U.
,
1990
, “
Numerical Investigation of the Three-Dimensional Development in Boundary-Layer Transition
,”
AIAA J.
,
28
(
1
), pp.
29
37
.
25.
Fasel
,
H.
, and
Konzelmann
,
U.
,
1990
, “
Non-Parallel of a Flat-Plate Boundary Layer Using the Complete Navier-Stokes Equations
,”
J. Fluid Mech.
,
221
(
1
), pp.
311
347
.
26.
Sayadi
,
T.
,
Hamman
,
C. W.
, and
Moin
,
P.
,
2013
, “
Direct Numerical Simulation of Complete H-Type and K-Type Transitions With Implications for the Dynamics of Turbulent Boundary Layers
,”
J. Fluid Mech.
,
724
(
1
), pp.
480
509
.
27.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2009
, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA J.
,
47
(
12
), pp.
2894
2906
.
28.
Medida
,
S.
, and
Baeder
,
J.
,
2013
, “
A New Crossflow Transition Onset Criterion for RANS Turbulence Models
,”
AIAA
Paper No. 2013-3081.
29.
Coder
,
J. G.
, and
Maughmer
,
M. D.
,
2014
, “
Computational Fluid Dynamics Compatible Transition Modeling Using an Amplification Factor Transport Equation
,”
AIAA J.
,
52
(
11
), pp.
2506
2512
.
30.
Huai
,
X.
,
Joslin
,
R. D.
, and
Piomelli
,
U.
,
1997
, “
Large-Eddy Simulation of Transition to Turbulence in Boundary Layers
,”
Theor. Comput. Fluid Dyn.
,
9
(
2
), pp.
149
163
.
31.
Sayadi
,
T.
, and
Moin
,
P.
,
2012
, “
Large Eddy Simulation of Controlled Transition to Turbulence
,”
Phys. Fluids
,
24
(
11
), p.
114103
.
32.
Zaki
,
T. A.
, and
Durbin
,
P. A.
,
2005
, “
Mode Interaction and the Bypass Route to Transition
,”
J. Fluid Mech.
,
531
, pp.
85
111
.
33.
Liu
,
Y.
,
Zaki
,
T. A.
, and
Durbin
,
P. A.
,
2008
, “
Boundary-Layer Transition by Interaction of Discrete and Continuous Modes
,”
J. Fluid Mech.
,
604
(1), pp.
199
233
.
34.
Joo
,
J.
, and
Durbin
,
P. A.
,
2012
, “
Continuous Mode Transition in High-Speed Boundary-Layers
,”
Flow Turbul. Combust.
,
88
(
3
), pp.
407
430
.
35.
Moin
,
P.
,
Squires
,
K.
,
Cabot
,
W.
, and
Lee
,
S.
,
1991
, “
A Dynamic Subgrid‐Scale Model for Compressible Turbulence and Scalar Transport
,”
Phys. Fluids A
,
3
(
11
), pp.
2746
2757
.
36.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow Turbul. Combust.
,
62
(
3
), pp.
183
200
.
37.
Erlebacher
,
G.
,
Hussaini
,
M. Y.
,
Speziale
,
C. G.
, and
Zang
,
T. A.
,
1992
, “
Toward the Large-Eddy Simulation of Compressible Flows
,”
J. Fluid Mech.
,
238
(
1
), pp.
155
185
.
38.
Sengupa
,
K.
,
Jacobs
,
G. B.
, and
Mashayek
,
F.
,
2009
, “
Large-Eddy Simulation of Compressible Flows Using a Spectral Multidomain Method
,”
Int. J. Numer. Methods Fluids
,
61
(
3
), pp.
311
340
.
39.
Garnier
,
E.
,
Adams
,
N.
, and
Sagaut
,
P.
,
2009
,
Large Eddy Simulation for Compressible Flows
,
Springer
, Dordrecht, The Netherlands.
40.
Ni
,
R.-H.
,
1982
, “
A Multiple-Grid Scheme for Solving the Euler Equations
,”
AIAA J.
,
20
(
11
), pp.
1565
1571
.
41.
Medic
,
G.
, and
Sharma
,
O.
,
2012
, “
Large-Eddy Simulation of Flow in a Low-Pressure Turbine Cascade
,”
ASME
Paper No. GT2012-68878.
42.
Jee
,
S.
,
Joo
,
J.
, and
Medic
,
G.
,
2016
, “
Large-Eddy Simulation of a High-Pressure Turbine Vane With Inlet Turbulence
,”
ASME
Paper No. GT2016-56980.
43.
Joo
,
J.
, and
Medic
,
G.
, and
Sharma
,
O.
,
2016
, “
Large-Eddy Simulation Investigation of Impact of Roughness on Flow in a Low-Pressure Turbine
,”
ASME
Paper No. GT2016-57912.
44.
Medic
,
G.
,
Zhang
,
V.
,
Wang
,
G.
,
Joo
,
J.
, and
Sharma
,
O.
,
2016
, “
Prediction of Transition and Losses in Compressor Cascades Using Large-Eddy Simulation
,”
ASME J. Turbomach.
,
138
(
12
), p.
121001
.
45.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Stream, and Convergence Zones in Turbulent Flows
,”
Summer Program, Center for Turbulent Research, Stanford University
, Stanford, CA, pp.
193
208
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890015184.pdf
46.
White
,
F. M.
,
2006
,
Viscous Fluid Flow
, 3rd ed.,
McGraw-Hill
,
New York
.
47.
Saric
,
W. S.
, and
Nayfeh
,
A. H.
,
1975
, “
Nonparallel Stability of Boundary-Layer Flows
,”
Phys. Fluids
,
18
(
8
), pp.
945
950
.
You do not currently have access to this content.