A comprehensive numerical study was performed in order to examine the effect of density ratio on the mixing process inside the mixing zone formed by Rayleigh–Taylor instability (RTI). This effect exhibits itself in the mixing parameters and increase of the density of the bubbles. The motivation of this work is to relate the density of the bubbles to the growth parameter for the self-similar evolution, α, we suggest an effective Atwood formulation, found to be approximately half of the original Atwood number. We also examine the sensitivity of the parameters above to the dimensionality (two-dimensional (2D)/three-dimensional (3D)) and to numerical miscibility.

References

1.
Emery
,
M. H.
,
Gardner
,
J. H.
, and
Boris
,
J. P.
,
1982
, “
Rayleigh-Taylor and Kelvin-Helmholtz Instabilities in Targets Accelerated by Laser Ablation
,”
Phys. Rev. Lett.
,
48
(
10
), p.
677
.
2.
Guzman
,
J.
, and
Plewa
,
T.
,
2009
, “
Non-Spherical Core-Collapse Supernovae: Evolution Towards Homologous Expansion this Paper Is Published as Part of a Collection in Honour of Todd Dupont's 65th Birthday
,”
Nonlinearity
,
22
(
11
), p.
2775
.
3.
Alon
,
U.
,
Hecht
,
J.
,
Ofer
,
D.
, and
Shvarts
,
D.
,
1995
, “
Power Laws and Similarity of Rayleigh-Taylor and Richtmyer-Meshkov Mixing Fronts at All Density Ratios
,”
Phys. Rev. Lett.
,
74
(
4
), pp.
534
537
.
4.
Oron
,
D.
,
Arazi
,
L.
,
Kartoon
,
D.
,
Rikanati
,
A.
,
Alon
,
U.
, and
Shvarts
,
D.
,
2001
, “
Dimensionality Dependence of the Rayleigh–Taylor and Richtmyer–Meshkov Instability Late-Time Scaling Laws
,”
Phys. Plasmas
,
8
(
6
), pp.
2883
2889
.
5.
Elbaz
,
Y.
,
2014
, “The Effect of Initial Conditions on Rayleigh-Taylor and Richtmyer-Meshkov Instabilities and the Characteristics of Their Asymptotic Self-Similar Behavior,” Ph.D. thesis, Ben-Gurion University of the Negev, Beersheba, Israel.
6.
Dimonte
,
G.
,
Youngs
,
D. L.
,
Dimits
,
A.
,
Weber
,
S.
,
Marinak
,
M.
,
Wunsch
,
S.
,
Garasi
,
C.
,
Robinson
,
A.
,
Andrews
,
M. J.
,
Ramaprabhu
,
P.
,
Calder
,
A. C.
,
Fryxell
,
B.
,
Biello
,
J.
,
Dursi
,
L.
,
MacNeice
,
P.
,
Olson
,
K.
,
Ricker
,
P.
,
Rosner
,
R.
,
Timmes
,
F.
,
Tufo
,
H.
,
Young
,
Y.-N.
, and
Zingale
,
M.
,
2004
, “
A Comparative Study of the Turbulent Rayleigh–Taylor Instability Using High-Resolution Three-Dimensional Numerical Simulations: The Alpha-Group Collaboration
,”
Phys. Fluids
,
16
(
5
), pp.
1668
1693
.
7.
Youngs
,
D. L.
,
2013
, “
The Density Ratio Dependence of Self-Similar Rayleigh–Taylor Mixing
,”
Philos. Trans. R. Soc. A
,
371
(
2003
), p.
20120173
.
8.
Burton
,
G. C.
,
2011
, “
Study of Ultrahigh Atwood-Number Rayleigh–Taylor Mixing Dynamics Using the Nonlinear Large-Eddy Simulation Method
,”
Phys. Fluids
,
23
(
4
), p.
045106
.
9.
Gréa
,
B.-J.
,
2013
, “
The Rapid Acceleration Model and the Growth Rate of a Turbulent Mixing Zone Induced by Rayleigh-Taylor Instability
,”
Phys. Fluids
,
25
(
1
), p.
015118
.
10.
Elbaz
,
Y.
, and
Shvarts
,
D.
, “Meanfield Self Similar Solutions to the Asymptotic Evolution of Rayleigh-Taylor and Richtmyer-Meshkov Instabilities,” Phys. Rev. Lett. (submitted).
11.
Dimonte
,
G.
,
2004
, “
Dependence of Turbulent Rayleigh-Taylor Instability on Initial Perturbations
,”
Phys. Rev. E
,
69
(
5
), p.
056305
.
12.
Poujade
,
O.
, and
Peybernes
,
M.
,
2010
, “
Growth Rate of Rayleigh-Taylor Turbulent Mixing Layers With the Foliation Approach
,”
Phys. Rev. E
,
81
(
1
), p.
016316
.
13.
Zhou, Y., 2017, “
Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. II
,”
Physics Reports
(in press).
14.
Danckwerts
,
P.
,
1952
, “
The Definition and Measurement of Some Characteristics of Mixtures
,”
Appl. Sci. Res., Sect. A
,
3
(
4
), pp.
279
296
.
15.
Zhou, Y., Cabot, W. H., and Thornber, B., 2016, “
Asymptotic behavior of the mixed mass in Rayleigh -Taylor and Richtmyer -Meshkov instability induced flows
,”
Physics of Plasmas
,
23
(5), p.052712.
16.
Ramaprabhu
,
P.
, and
Andrews
,
M.
,
2004
, “
Experimental Investigation of Rayleigh–Taylor Mixing at Small Atwood Numbers
,”
J. Fluid Mech.
,
502
, pp.
233
271
.
17.
Banerjee
,
A.
,
Kraft
,
W. N.
, and
Andrews
,
M. J.
,
2010
, “
Detailed Measurements of a Statistically Steady Rayleigh–Taylor Mixing Layer From Small to High Atwood Numbers
,”
J. Fluid Mech.
,
659
, pp.
127
190
.
18.
Dimonte
,
G.
,
1999
, “
Nonlinear Evolution of the Rayleigh–Taylor and Richtmyer–Meshkov Instabilities
,”
Phys. Plasmas
,
6
(
5
), pp.
2009
2015
.
19.
Dimonte
,
G.
, and
Schneider
,
M.
,
2000
, “
Density Ratio Dependence of Rayleigh-Taylor Mixing for Sustained and Impulsive Acceleration Histories
,”
Phys. Fluids
,
12
(
2
), pp. 304–321.
20.
Cabot
,
W.
,
2006
, “
Comparison of Two-and Three-Dimensional Simulations of Miscible Rayleigh-Taylor Instability
,”
Phys. Fluids
,
18
(
4
), p.
045101
.
21.
Youngs
,
D.
,
1982
, “
Time–Dependent Multi-Material Flow With Large Fluid Distortion
,”
Numerical Methods in Fluid Dynamics
,
K. W.
Morton
and
M. J.
Baines
, eds.,
Academic Press
,
New York
.
22.
Freed
,
N.
,
Ofer
,
D.
,
Shvarts
,
D.
, and
Orszag
,
S. A.
,
1991
, “
Two-Phase Flow Analysis of Self-Similar Turbulent Mixing by Rayleigh–Taylor Instability
,”
Phys. Fluids A: Fluid Dyn.
,
3
(
5
), pp.
912
918
.
23.
Hecht
,
J.
,
Ofer
,
D.
,
Alon
,
U.
,
Shvarts
,
D.
,
Orszag
,
S.
, and
McCrory
,
R.
,
1995
, “
Three-Dimensional Simulations and Analysis of the Nonlinear Stage of the Rayleigh-Taylor Instability
,”
Laser Part. Beams
,
13
(
3
), pp.
423
440
.
24.
Malamud
,
G.
,
Levi-Hevroni
,
D.
, and
Levy
,
A.
,
2003
, “
Two-Dimensional Model for Simulating Shock-Wave Interaction With Rigid Porous Materials
,”
AIAA J.
,
41
(
4
), pp.
663
673
.
25.
Chandrasekhar
,
S.
,
1961
,
Hydrodynamics and Hydromagnetic Stability
,
Oxford University Press
,
Oxford, UK
.
26.
Young
,
Y.-N.
, and
Ham
,
F.
,
2006
, “
Surface Tension in Incompressible Rayleigh–Taylor Mixing Flow
,”
J. Turbul.
,
7
, p.
N71
.
27.
Mohammadi
,
A.
, and
Smits
,
A. J.
,
2016
, “
Stability of Two-Immiscible-Fluid Systems: A Review of Canonical Plane Parallel Flows
,”
ASME J. Fluids Eng.
,
138
(
10
), p.
100803
.
28.
Youngs
,
D. L.
,
1991
, “
Three-Dimensional Numerical Simulation of Turbulent Mixing by Rayleigh–Taylor Instability
,”
Phys. Fluids A: Fluid Dyn.
,
3
(
5
), pp.
1312
1320
.
29.
Youngs
,
D. L.
,
1994
, “
Numerical Simulation of Mixing by Rayleigh-Taylor and Richtmyer-Meshkov Instabilities
,”
Laser Part. Beams
,
12
(4), pp.
725
725
.
30.
Cook
,
A. W.
, and
Dimotakis
,
P. E.
,
2001
, “
Transition Stages of Rayleigh–Taylor Instability Between Miscible Fluids
,”
J. Fluid Mech.
,
443
, pp.
69
99
.
31.
Livescu
,
D.
,
2013
, “
Numerical Simulations of Two-Fluid Turbulent Mixing at Large Density Ratios and Applications to the Rayleigh–Taylor Instability
,”
Philos. Trans. R. Soc. A
,
371
(
2003
), p.
20120185
.
32.
Roberts
,
M.
, and
Jacobs
,
J. W.
,
2016
, “
The Effects of Forced Small-Wavelength, Finite-Bandwidth Initial Perturbations and Miscibility on the Turbulent Rayleigh–Taylor Instability
,”
J. Fluid Mech.
,
787
, pp.
50
83
.
33.
Malamud
,
G.
,
Grosskopf
,
M.
, and
Drake
,
R.
,
2014
, “
Conceptual Design of a Rayleigh–Taylor Experiment to Study Bubble Merger in Two Dimensions on NIF
,”
High Energy Density Phys.
,
11
, pp.
17
25
.
You do not currently have access to this content.