We analyze the use of water solutions of Xanthan Gum (XG) for drag reduction (DR) in annular spaces. We provide a direct quantitative comparison between the DR in an annulus and that in straight tubes. We can fairly compare the data from the two geometries by using the general definition of the Reynolds number, which is independent of the geometry. With such a definition, the product of the friction factor by Re is a constant in laminar flows. Moreover, the friction factor for a turbulent flow of Newtonian fluids in an annulus fits Colebrook's correlation. Our main results show that the DR is more pronounced in annular pipes than tubes. We believe this is due to the relative increase of the buffer zone in an annular geometry.

References

1.
Forrest
,
F.
, and
Grierson
,
G. A.
,
1931
, “
Friction Losses in Cast Iron Pipe Carrying
,”
Paper Trade J.
,
92
, pp.
39
41
.
2.
Mysels
,
K. J.
,
1949
, “
Flow of Thickened Fluid
,” U.S. Patent No.
US2492173 A
.https://www.google.co.in/patents/US2492173
3.
Toms
,
B. A.
,
1948
, “
Some Observations on the Flow of Linear Polymer Solutions Through Straight Tubes at Large Reynolds Numbers
,”
International Congress on Rheology
, Scheveningen, The Netherlands, pp.
135
141
.
4.
Fabula
,
A. G.
,
1971
, “
Fire-Fighting Benefits of Polymeric Friction Reduction
,”
Trans. ASME J. Basic Eng.
,
93
(
3
), pp.
453
455
.
5.
Burger
,
E. D.
, and
Chorn
,
L. G.
,
1980
, “
Studies of Drag Reduction Conducted Over a Broad Range of Pipeline Conditions When Flowing Prudhoe Bay Crude Oil
,”
J. Rheol.
,
24
(
5
), p.
603
.
6.
Kameneva
,
M.
,
2012
, “
Microrheological Effects of Drag-Reducing Polymers In Vitro and In Vivo
,”
Int. J. Eng. Sci
,
59
, pp.
168
183
.
7.
Virk
,
P. S.
,
1975
, “
Drag Reduction Fundamentals
,”
AIChE J.
,
21
(
4
), pp.
625
656
.
8.
Virk
,
P. S.
,
1975
, “
Drag Reduction by Collapsed and Extended Polyelectrolytes
,”
Nature
,
253
, pp.
109
110
.
9.
Virk
,
P. S.
,
Sherman
,
D. C.
, and
Wagger
,
D. L.
,
1997
, “
Additive Equivalence During Turbulent Drag Reduction
,”
AIChE J.
,
43
(
12
), pp.
3257
3259
.
10.
Amarouchene
,
Y.
,
Bonn
,
D.
,
Kellay
,
H.
,
Lo
,
T. S.
,
L'vov
,
V. S.
, and
Procaccia
,
I.
,
2008
, “
Reynolds Number Dependence of Drag Reduction by Rodlike Polymers
,”
Phys. Fluids
,
20
(
6
), p.
065108
.
11.
Shenoy
,
A. V.
,
1984
, “
A Review on Drag Reduction With Special Reference to Micellar Systems
,”
Colloid Polym. Sci.
,
262
(
4
), pp.
319
337
.
12.
Lumley
,
J. L.
,
1969
, “
Drag Reduction by Additives
,”
Annu. Rev. Fluid Mech.
,
1
, pp.
367
384
.
13.
Tabor
,
M.
, and
de Gennes
,
P. G.
,
1986
, “
A Cascade Theory of Drag Reduction
,”
Europhys. Lett.
,
2
(
7
), pp.
519
522
.
14.
Sreenivasan
,
K. R.
, and
White
,
C. M.
,
2000
, “
The Onset of Drag Reduction by Dilute Polymer Additives, and the Maximum Drag Reduction Asymptote
,”
J. Fluid Mech.
,
409
, pp.
149
164
.
15.
Procaccia
,
I.
, and
L'vov
,
V. S.
,
2008
, “
Theory of Drag Reduction by Polymers in Wall-Bounded Turbulence
,”
Rev. Mod. Phys.
,
80
, pp.
225
247
.
16.
Dubief
,
Y.
,
White
,
C. M.
,
Terrapon
,
V. E.
,
Shaqfeh
,
E. S. G.
,
Moin
,
P.
, and
Lele
,
S. K.
,
2004
, “
On the Coherent Drag-Reducing and Turbulence-Enhancing Behaviour of Polymers in Wall Flows
,”
J. Fluid Mech.
,
514
, pp.
271
280
.
17.
Pereira
,
A. S.
,
Mompean
,
G.
,
Thais
,
L.
, and
Soares
,
E. J.
,
2017
, “
Transient Aspects of Drag Reducing Plane Couette Flows
,”
J. Non-Newtonian Fluid Mech.
,
241
, pp.
60
69
.
18.
Toonder
,
J. M. J. D.
,
Hulsen
,
M. A.
,
Kuiken
,
G. D. C.
, and
Nieuwstadt
,
F. T. M.
,
1997
, “
Drag Reduction by Polymer Additives in a Turbulent Pipe Flow: Numerical and Laboratory Experiments
,”
J. Fluid Mech.
,
337
, pp.
193
231
.
19.
Mussa
,
T.
, and
Tiu
,
C.
,
1994
, “
Factors Affecting Polymer Degradation in Turbulent Pipe Flow
,”
Chem. Eng. Sci.
,
49
(
10
), pp.
1681
1692
.
20.
Kalashnikov
,
V. N.
,
1998
, “
Dynamical Similarity and Dimensionless Relations for Turbulent Drag Reduction by Polymer Additives
,”
J. Non-Newtonian Fluid Mech.
,
75
(
2–3
), pp.
209
230
.
21.
Vanapalli
,
S. A.
,
Ceccio
,
S. L.
, and
Solomon
,
M. J.
,
2006
, “
Universal Scaling for Polymer Chain Scission in Turbulence
,”
Proc. Natl. Acad. Sci.
,
103
(
45
), pp.
16660
16665
.
22.
Pereira
,
A. S.
, and
Soares
,
E. J.
,
2012
, “
Polymer Degradation of Dilute Solutions in Turbulent Drag Reducing Flows in a Cylindrical Double Gap Rheometer Device
,”
J. Non-Newtonian Fluid Mech.
,
179–180
, pp.
9
22
.
23.
Pereira
,
A. S.
,
Andrade
,
R. M.
, and
Soares
,
E. J.
,
2013
, “
Drag Reduction Induced by Flexible and Rigid Molecules in a Turbulent Flow Into a Rotating Cylindrical Double Gap Device: Comparison Between Poly (Ethylene Oxide), Polyacrylamide, and Xanthan Gum
,”
J. Non-Newtonian Fluid Mech.
,
202
, pp.
72
87
.
24.
Soares
,
E. J.
,
Sandoval
,
G. A. B.
,
Silveira
,
L.
,
Pereira
,
A. S.
,
Trevelin
,
R.
, and
Thomaz
,
F.
,
2015
, “
Loss of Efficiency of Polymeric Drag Reducers Induced by High Reynolds Number Flows in Tubes With Imposed Pressure
,”
Phys. Fluids
,
27
(
12
), p.
125105
.
25.
Andrade
,
R. M.
,
Pereira
,
A. S.
, and
Soares
,
E. J.
,
2014
, “
Drag Increase at the Very Start of Drag Reducing Flows in a Rotating Cylindrical Double Gap Device
,”
J. Non-Newtonian Fluid Mech.
,
212
, pp.
73
79
.
26.
Andrade
,
R. M.
,
Pereira
,
A. S.
, and
Soares
,
E. J.
,
2016
, “
Drag Reduction in Synthetic Seawater by Flexible and Rigid Polymer Addition Into a Rotating Cylindrical Double Gap Device
,”
ASME J. Fluids Eng.
,
138
(2), p.
021101
.
27.
Sandoval
,
G. A. B.
, and
Soares
,
E. J.
,
2016
, “
Effect of Combined Polymers on the Loss of Efficiency Caused by Mechanical Degradation in Drag Reducing Flows Through Straight Tubes
,”
Rheol. Acta
,
55
(
7
), pp.
559
569
.
28.
Ptasinki
,
P. K.
,
Nieuwstadt
,
F. T. M.
,
van den Brule
,
B. H. A. A.
, and
Hulsen
,
M. A.
,
2001
, “
Experiments in Turbulent Pipe Flow With Polymer Additives at Maximum Drag Reduction
,”
Flow, Turbul. Combust.
,
66
(2), pp.
159
182
.
29.
Coelho
,
E. C.
,
Barbosa
,
K. C. O.
, and
Soares
,
E. J.
,
2016
, “
Okra as a Drag Reducer for High Reynolds Numbers Water Flows
,”
Rheol. Acta
,
55
(
11–12
), pp.
983
991
.
30.
Shah
,
S. N.
, and
Zhou
,
Y.
,
2009
, “
Maximum Drag Reduction Asymptote of Polymeric Fluid Flow in Coiled Tubing
,”
ASME J. Fluids Eng.
,
131
(
1
), p.
011201
.
31.
Kamel
,
A. H.
, and
Shah
,
S. N.
,
2013
, “
Maximum Drag Reduction Asymptote for Surfactant-Based Fluids in Circular Coiled Tubing
,”
ASME J. Fluids Eng.
,
135
(
3
), p.
031201
.
32.
Rubin
,
H.
, and
Elata
,
C.
,
1971
, “
Turbulent Flow of Dilute Polymer Solutions Through an Annulus
,”
AIChE J.
,
17
(
4
), pp.
990
996
.
33.
Thompson
,
R. L.
, and
Soares
,
E. J.
,
2016
, “
Viscoplastic Dimensionless Numbers
,”
J. Non-Newtonian Fluid Mech.
,
238
, pp.
57
64
.
34.
Reynolds
,
O.
,
1883
, “
An Experimental Investigation of the Circumstances Which Determine Whether the Motion of Water Shall Be Direct or Sinuous, and of the Law of Resistance in Parallel Channels
,”
Phil. Trans. R. Soc. A
,
174
, pp.
935
982
.
35.
Soares
,
E. J.
,
Naccache
,
M. F.
, and
Mendes
,
P. R. S.
,
2003
, “
Heat Transfer to Viscoplastic Materials Flowing Axially Through Concentric Annuli
,”
Int. J. Heat Fluid Flow
,
24
(
5
), pp.
762
773
.
36.
da Silva
,
J. Q.
,
Soares
,
E. J.
,
Ramos
,
R.
, and
Andrade
,
R. M.
,
2014
, “
Heat Transfer to Herschel–Bulkley Materials Flowing in the Entrance of Tubes With an Imposed Wall Temperature Profile
,”
J. Braz. Soc. Mech. Sci. Eng.
,
36
(
2
), pp.
245
255
.
37.
Kfuri
,
S. L. D.
,
Soares
,
E. J.
,
Thompson
,
R. L.
, and
Siqueira
,
R. N.
,
2016
, “
Friction Coefficients for Bingham and Power-Law Fluids in Abrupt Contractions and Expansions
,”
ASME J. Fluids Eng.
,
139
(
2
), p.
021203
.
38.
Jones
,
O. C.
,
1976
, “
An Improvement in the Calculation of Turbulent Friction in Rectangular Ducts
,”
ASME J. Fluids Eng.
,
98
(
2
), pp.
173
180
.
39.
Jones
,
O. C.
, and
Leung
,
J. C. M.
,
1981
, “
An Improvement in the Calculation of Turbulent Friction in Smooth Concentric Annuli
,”
ASME J. Fluids Eng.
,
103
(
4
), pp.
615
623
.
You do not currently have access to this content.