We analyze the use of water solutions of Xanthan Gum (XG) for drag reduction (DR) in annular spaces. We provide a direct quantitative comparison between the DR in an annulus and that in straight tubes. We can fairly compare the data from the two geometries by using the general definition of the Reynolds number, which is independent of the geometry. With such a definition, the product of the friction factor by Re is a constant in laminar flows. Moreover, the friction factor for a turbulent flow of Newtonian fluids in an annulus fits Colebrook's correlation. Our main results show that the DR is more pronounced in annular pipes than tubes. We believe this is due to the relative increase of the buffer zone in an annular geometry.
Issue Section:
Flows in Complex Systems
References
1.
Forrest
, F.
, and Grierson
, G. A.
, 1931
, “Friction Losses in Cast Iron Pipe Carrying
,” Paper Trade J.
, 92
, pp. 39
–41
.2.
Mysels
, K. J.
, 1949
, “Flow of Thickened Fluid
,” U.S. Patent No. US2492173 A
.https://www.google.co.in/patents/US24921733.
Toms
, B. A.
, 1948
, “Some Observations on the Flow of Linear Polymer Solutions Through Straight Tubes at Large Reynolds Numbers
,” International Congress on Rheology
, Scheveningen, The Netherlands, pp. 135
–141
.4.
Fabula
, A. G.
, 1971
, “Fire-Fighting Benefits of Polymeric Friction Reduction
,” Trans. ASME J. Basic Eng.
, 93
(3
), pp. 453
–455
.5.
Burger
, E. D.
, and Chorn
, L. G.
, 1980
, “Studies of Drag Reduction Conducted Over a Broad Range of Pipeline Conditions When Flowing Prudhoe Bay Crude Oil
,” J. Rheol.
, 24
(5
), p. 603
.6.
Kameneva
, M.
, 2012
, “Microrheological Effects of Drag-Reducing Polymers In Vitro and In Vivo
,” Int. J. Eng. Sci
, 59
, pp. 168
–183
.7.
Virk
, P. S.
, 1975
, “Drag Reduction Fundamentals
,” AIChE J.
, 21
(4
), pp. 625
–656
.8.
Virk
, P. S.
, 1975
, “Drag Reduction by Collapsed and Extended Polyelectrolytes
,” Nature
, 253
, pp. 109
–110
.9.
Virk
, P. S.
, Sherman
, D. C.
, and Wagger
, D. L.
, 1997
, “Additive Equivalence During Turbulent Drag Reduction
,” AIChE J.
, 43
(12
), pp. 3257
–3259
.10.
Amarouchene
, Y.
, Bonn
, D.
, Kellay
, H.
, Lo
, T. S.
, L'vov
, V. S.
, and Procaccia
, I.
, 2008
, “Reynolds Number Dependence of Drag Reduction by Rodlike Polymers
,” Phys. Fluids
, 20
(6
), p. 065108
.11.
Shenoy
, A. V.
, 1984
, “A Review on Drag Reduction With Special Reference to Micellar Systems
,” Colloid Polym. Sci.
, 262
(4
), pp. 319
–337
.12.
Lumley
, J. L.
, 1969
, “Drag Reduction by Additives
,” Annu. Rev. Fluid Mech.
, 1
, pp. 367
–384
.13.
Tabor
, M.
, and de Gennes
, P. G.
, 1986
, “A Cascade Theory of Drag Reduction
,” Europhys. Lett.
, 2
(7
), pp. 519
–522
.14.
Sreenivasan
, K. R.
, and White
, C. M.
, 2000
, “The Onset of Drag Reduction by Dilute Polymer Additives, and the Maximum Drag Reduction Asymptote
,” J. Fluid Mech.
, 409
, pp. 149
–164
.15.
Procaccia
, I.
, and L'vov
, V. S.
, 2008
, “Theory of Drag Reduction by Polymers in Wall-Bounded Turbulence
,” Rev. Mod. Phys.
, 80
, pp. 225
–247
.16.
Dubief
, Y.
, White
, C. M.
, Terrapon
, V. E.
, Shaqfeh
, E. S. G.
, Moin
, P.
, and Lele
, S. K.
, 2004
, “On the Coherent Drag-Reducing and Turbulence-Enhancing Behaviour of Polymers in Wall Flows
,” J. Fluid Mech.
, 514
, pp. 271
–280
.17.
Pereira
, A. S.
, Mompean
, G.
, Thais
, L.
, and Soares
, E. J.
, 2017
, “Transient Aspects of Drag Reducing Plane Couette Flows
,” J. Non-Newtonian Fluid Mech.
, 241
, pp. 60
–69
.18.
Toonder
, J. M. J. D.
, Hulsen
, M. A.
, Kuiken
, G. D. C.
, and Nieuwstadt
, F. T. M.
, 1997
, “Drag Reduction by Polymer Additives in a Turbulent Pipe Flow: Numerical and Laboratory Experiments
,” J. Fluid Mech.
, 337
, pp. 193
–231
.19.
Mussa
, T.
, and Tiu
, C.
, 1994
, “Factors Affecting Polymer Degradation in Turbulent Pipe Flow
,” Chem. Eng. Sci.
, 49
(10
), pp. 1681
–1692
.20.
Kalashnikov
, V. N.
, 1998
, “Dynamical Similarity and Dimensionless Relations for Turbulent Drag Reduction by Polymer Additives
,” J. Non-Newtonian Fluid Mech.
, 75
(2–3
), pp. 209
–230
.21.
Vanapalli
, S. A.
, Ceccio
, S. L.
, and Solomon
, M. J.
, 2006
, “Universal Scaling for Polymer Chain Scission in Turbulence
,” Proc. Natl. Acad. Sci.
, 103
(45
), pp. 16660
–16665
.22.
Pereira
, A. S.
, and Soares
, E. J.
, 2012
, “Polymer Degradation of Dilute Solutions in Turbulent Drag Reducing Flows in a Cylindrical Double Gap Rheometer Device
,” J. Non-Newtonian Fluid Mech.
, 179–180
, pp. 9
–22
.23.
Pereira
, A. S.
, Andrade
, R. M.
, and Soares
, E. J.
, 2013
, “Drag Reduction Induced by Flexible and Rigid Molecules in a Turbulent Flow Into a Rotating Cylindrical Double Gap Device: Comparison Between Poly (Ethylene Oxide), Polyacrylamide, and Xanthan Gum
,” J. Non-Newtonian Fluid Mech.
, 202
, pp. 72
–87
.24.
Soares
, E. J.
, Sandoval
, G. A. B.
, Silveira
, L.
, Pereira
, A. S.
, Trevelin
, R.
, and Thomaz
, F.
, 2015
, “Loss of Efficiency of Polymeric Drag Reducers Induced by High Reynolds Number Flows in Tubes With Imposed Pressure
,” Phys. Fluids
, 27
(12
), p. 125105
.25.
Andrade
, R. M.
, Pereira
, A. S.
, and Soares
, E. J.
, 2014
, “Drag Increase at the Very Start of Drag Reducing Flows in a Rotating Cylindrical Double Gap Device
,” J. Non-Newtonian Fluid Mech.
, 212
, pp. 73
–79
.26.
Andrade
, R. M.
, Pereira
, A. S.
, and Soares
, E. J.
, 2016
, “Drag Reduction in Synthetic Seawater by Flexible and Rigid Polymer Addition Into a Rotating Cylindrical Double Gap Device
,” ASME J. Fluids Eng.
, 138
(2), p. 021101
.27.
Sandoval
, G. A. B.
, and Soares
, E. J.
, 2016
, “Effect of Combined Polymers on the Loss of Efficiency Caused by Mechanical Degradation in Drag Reducing Flows Through Straight Tubes
,” Rheol. Acta
, 55
(7
), pp. 559
–569
.28.
Ptasinki
, P. K.
, Nieuwstadt
, F. T. M.
, van den Brule
, B. H. A. A.
, and Hulsen
, M. A.
, 2001
, “Experiments in Turbulent Pipe Flow With Polymer Additives at Maximum Drag Reduction
,” Flow, Turbul. Combust.
, 66
(2), pp. 159
–182
.29.
Coelho
, E. C.
, Barbosa
, K. C. O.
, and Soares
, E. J.
, 2016
, “Okra as a Drag Reducer for High Reynolds Numbers Water Flows
,” Rheol. Acta
, 55
(11–12
), pp. 983
–991
.30.
Shah
, S. N.
, and Zhou
, Y.
, 2009
, “Maximum Drag Reduction Asymptote of Polymeric Fluid Flow in Coiled Tubing
,” ASME J. Fluids Eng.
, 131
(1
), p. 011201
.31.
Kamel
, A. H.
, and Shah
, S. N.
, 2013
, “Maximum Drag Reduction Asymptote for Surfactant-Based Fluids in Circular Coiled Tubing
,” ASME J. Fluids Eng.
, 135
(3
), p. 031201
.32.
Rubin
, H.
, and Elata
, C.
, 1971
, “Turbulent Flow of Dilute Polymer Solutions Through an Annulus
,” AIChE J.
, 17
(4
), pp. 990
–996
.33.
Thompson
, R. L.
, and Soares
, E. J.
, 2016
, “Viscoplastic Dimensionless Numbers
,” J. Non-Newtonian Fluid Mech.
, 238
, pp. 57
–64
.34.
Reynolds
, O.
, 1883
, “An Experimental Investigation of the Circumstances Which Determine Whether the Motion of Water Shall Be Direct or Sinuous, and of the Law of Resistance in Parallel Channels
,” Phil. Trans. R. Soc. A
, 174
, pp. 935
–982
.35.
Soares
, E. J.
, Naccache
, M. F.
, and Mendes
, P. R. S.
, 2003
, “Heat Transfer to Viscoplastic Materials Flowing Axially Through Concentric Annuli
,” Int. J. Heat Fluid Flow
, 24
(5
), pp. 762
–773
.36.
da Silva
, J. Q.
, Soares
, E. J.
, Ramos
, R.
, and Andrade
, R. M.
, 2014
, “Heat Transfer to Herschel–Bulkley Materials Flowing in the Entrance of Tubes With an Imposed Wall Temperature Profile
,” J. Braz. Soc. Mech. Sci. Eng.
, 36
(2
), pp. 245
–255
.37.
Kfuri
, S. L. D.
, Soares
, E. J.
, Thompson
, R. L.
, and Siqueira
, R. N.
, 2016
, “Friction Coefficients for Bingham and Power-Law Fluids in Abrupt Contractions and Expansions
,” ASME J. Fluids Eng.
, 139
(2
), p. 021203
.38.
Jones
, O. C.
, 1976
, “An Improvement in the Calculation of Turbulent Friction in Rectangular Ducts
,” ASME J. Fluids Eng.
, 98
(2
), pp. 173
–180
.39.
Jones
, O. C.
, and Leung
, J. C. M.
, 1981
, “An Improvement in the Calculation of Turbulent Friction in Smooth Concentric Annuli
,” ASME J. Fluids Eng.
, 103
(4
), pp. 615
–623
.Copyright © 2018 by ASME
You do not currently have access to this content.