The shear layer development for a NACA 0025 airfoil at a low Reynolds number was investigated experimentally and numerically using large eddy simulation (LES). Two angles of attack (AOAs) were considered: 5 deg and 12 deg. Experiments and numerics confirm that two flow regimes are present. The first regime, present for an angle-of-attack of 5 deg, exhibits boundary layer reattachment with formation of a laminar separation bubble. The second regime consists of boundary layer separation without reattachment. Linear stability analysis (LSA) of mean velocity profiles is shown to provide adequate agreement between measured and computed growth rates. The stability equations exhibit significant sensitivity to variations in the base flow. This highlights that caution must be applied when experimental or computational uncertainties are present, particularly when performing comparisons. LSA suggests that the first regime is characterized by high frequency instabilities with low spatial growth, whereas the second regime experiences low frequency instabilities with more rapid growth. Spectral analysis confirms the dominance of a central frequency in the laminar separation region of the shear layer, and the importance of nonlinear interactions with harmonics in the transition process.

References

1.
Lei
,
J.
, and
He
,
J.
,
2015
, “
Adjoint-Based Aerodynamic Shape Optimization for Low Reynolds Number Airfoils
,”
ASME J. Fluids Eng.
,
138
(
2
), p.
021401
.
2.
Cadieux
,
F.
,
Domaradzki
,
J. A.
,
Sayadi
,
T.
, and
Bose
,
S.
,
2014
, “
Direct Numerical Simulation and Large Eddy Simulation of Laminar Separation Bubbles at Moderate Reynolds Numbers
,”
ASME J. Fluids Eng.
,
136
(
6
), p.
060902
.
3.
De Wijdeven
,
T.
, and
Katz
,
J.
,
2013
, “
Automotive Application of Vortex Generators in Ground Effect
,”
ASME J. Fluids Eng.
,
136
(
2
), p.
021102
.
4.
Mueller
,
T. J.
, and
Delaurier
,
J. D.
,
2003
, “
Aerodynamics of Small Vehicles
,”
Annu. Rev. Fluid Mech.
,
35
(
1
), pp.
89
111
.
5.
Tani
,
I.
,
1964
, “
Low-Speed Flows Involving Bubble Separations
,”
Prog. Aerosp. Sci.
,
5
, pp.
70
103
.
6.
Yarusevych
,
S.
,
Sullivan
,
P. E.
, and
Kawall
,
J. G.
,
2006
, “
Coherent Structures in an Airfoil Boundary Layer and Wake at Low Reynolds Numbers
,”
Phys. Fluids
,
18
(
4
), p.
044101
.
7.
Carmichael
,
B. H.
,
1981
, “
Low Reynolds Number Airfoil Survey, Volume 1
,” Low Energy Transport Systems, Capistrano Beach, CA, Report No.
NASA-CR-165803-VOL-1
.https://ntrs.nasa.gov/search.jsp?R=19820006186
8.
Kirk
,
T. M.
, and
Yarusevych
,
S.
,
2017
, “
Vortex Shedding Within Laminar Separation Bubbles Forming Over an Airfoil
,”
Exp. Fluids
,
58
(
5
), p.
43
.
9.
Dovgal
,
A. V.
,
Kozlov
,
V. V.
, and
Michalke
,
A.
,
1994
, “
Laminar Boundary Layer Separation: Instability and Associated Phenomena
,”
Prog. Aerosp. Sci.
,
30
(
1
), pp.
61
94
.
10.
Yarusevych
,
S.
,
Sullivan
,
P. E.
, and
Kawall
,
J. G.
,
2009
, “
On Vortex Shedding From an Airfoil in Low-Reynolds-Number Flows
,”
J. Fluid Mech.
,
632
, pp.
245
271
.
11.
Boutilier
,
M.
, and
Yarusevych
,
S.
,
2012
, “
Separated Shear Layer Transition Over an Airfoil at a Low Reynolds Number
,”
Phys. Fluids
,
24
(
8
), p. 084105.
12.
Lin
,
J. C. M.
, and
Pauley
,
L. L.
,
1996
, “
Low-Reynolds-Number Separation on an Airfoil
,”
AIAA J.
,
34
(
8
), pp.
1570
1577
.
13.
Burgmann
,
S.
, and
Schröder
,
W.
,
2008
, “
Investigation of the Vortex Induced Unsteadiness of a Separation Bubble Via Time-Resolved and Scanning PIV Measurements
,”
Exp. Fluids
,
45
(
4
), pp.
675
691
.
14.
Kim
,
H.-J.
,
Lee
,
S.
, and
Fujisawa
,
N.
,
2006
, “
Computation of Unsteady Flow and Aerodynamic Noise of NACA0018 Airfoil Using Large-Eddy Simulation
,”
Int. J. Heat Fluid Flow
,
27
(
2
), pp.
229
242
.
15.
You
,
D.
, and
Moin
,
P.
,
2008
, “
Active Control of Flow Separation Over an Airfoil Using Synthetic Jets
,”
J. Fluids Struct.
,
24
(
8
), pp.
1349
1357
.
16.
You
,
D.
,
Ham
,
F.
, and
Moin
,
P.
,
2008
, “
Discrete Conservation Principles in Large-Eddy Simulation With Application to Separation Control Over an Airfoil
,”
Phys. Fluids
,
20
(
10
), p.
101515
.
17.
Eisenbach
,
S.
, and
Friedrich
,
R.
,
2008
, “
Large-Eddy Simulation of Flow Separation on an Airfoil at a High Angle of Attack and Re = 10 5 Using Cartesian Grids
,”
Theor. Comput. Fluid Dyn.
,
22
(
3–4
), pp.
213
225
.
18.
Kojima
,
R.
,
Nonomura
,
T.
,
Oyama
,
A.
, and
Fujii
,
K.
,
2013
, “
Large-Eddy Simulation of Low-Reynolds-Number Flow Over Thick and Thin NACA Airfoils
,”
J. Aircr.
,
50
(
1
), pp.
187
196
.
19.
Anyoji
,
M.
,
Nonomura
,
T.
,
Aono
,
H.
,
Oyama
,
A.
,
Fujii
,
K.
,
Nagai
,
H.
, and
Asai
,
K.
,
2014
, “
Computational and Experimental Analysis of a High-Performance Airfoil Under Low-Reynolds-Number Flow Condition
,”
J. Aircr.
,
51
(
6
), pp.
1864
1872
.
20.
Alferez
,
N.
,
Mary
,
I.
, and
Lamballais
,
E.
,
2013
, “
Study of Stall development around an Airfoil by Means of High Fidelity Large Eddy Simulation
,”
Flow Turbul. Combust.
,
91
(
3
), pp.
623
641
.
21.
Mary
,
I.
, and
Sagaut
,
P.
,
2002
, “
Large Eddy Simulation of Flow Around an Airfoil Near Stall
,”
AIAA J.
,
40
(
6
), pp.
1139
1145
.
22.
Boutilier
,
M. S. H.
, and
Yarusevych
,
S.
,
2012
, “
Effects of End Plates and Blockage on Low-Reynolds-Number Flows Over Airfoils
,”
AIAA J.
,
50
(
7
), pp.
1547
1559
.
23.
Yavuzkurt
,
S.
,
1984
, “
A Guide to Uncertainty Analysis of Hot-Wire Data
,”
ASME J. Fluids Eng.
,
106
(
2
), pp.
181
186
.
24.
Sagaut
,
P.
,
2006
,
Large Eddy Simulation for Incompressible Flows
,
Springer
,
Berlin
.
25.
Tabor
,
G.
, and
Baba-Ahmadi
,
M.
,
2010
, “
Inlet Conditions for Large Eddy Simulation: A Review
,”
Comput. Fluids
,
39
(
4
), pp.
553
567
.
26.
Roache
,
P.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.
27.
Pope
,
S.
,
2004
, “
Ten Questions Concerning the Large-Eddy Simulation of Turbulent Flows
,”
New J. Phys.
,
6
, p.
35
.
28.
Weller
,
H.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
, p.
620
.
29.
Loken
,
C.
,
Gruner
,
D.
,
Groer
,
L.
,
Peltier
,
R.
,
Bunn
,
N.
,
Craig
,
M.
,
Henriques
,
T.
,
Dempsey
,
J.
,
Yu
,
C.-H.
,
Chen
,
J.
,
Dursi
,
L. J.
,
Chong
,
J.
,
Northrup
,
S.
,
Pinto
,
J.
,
Knecht
,
N.
, and
van Zon
,
R.
,
2010
, “
SciNet: Lessons Learned From Building a Power-Efficient Top-20 System and Data Centre
,”
J. Phys.:Conf. Ser.
,
256
, p.
012026
.
30.
Hunt
,
J.
,
Wray
,
A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,” Center for Turbulence Research, Stanford University, Stanford, CA, Report No.
CTR-S88
.https://ntrs.nasa.gov/search.jsp?R=19890015184
31.
Olson
,
D. A.
,
Katz
,
A. W.
,
Naguib
,
A. M.
,
Koochesfahani
,
M. M.
,
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
,
2013
, “
On the Challenges in Experimental Characterization of Flow Separation Over Airfoils at Low Reynolds Number
,”
Exp. Fluids
,
54
(
2
), pp.
1
11
.
32.
O'Meara
,
M. M.
, and
Mueller
,
T. J.
,
1987
, “
Laminar Separation Bubble Characteristics on an Airfoil at Low Reynolds Numbers
,”
AIAA J.
,
25
(
8
), pp.
1033
1041
.
33.
Saric
,
W. S.
,
Reed
,
H. L.
, and
Kerschen
,
E. J.
,
2002
, “
Boundary-Layer Receptivity to Freestream Disturbances
,”
Annu. Rev. Fluid Mech.
,
34
, pp.
291
319
.
34.
Drazin
,
P. G.
,
2002
,
Introduction to Hydrodynamic Stability
,
Cambridge University Press
,
Cambridge, UK
.
35.
Schmid
,
P. J.
, and
Henningson
,
D. S.
,
2001
,
Stability and Transition in Shear Flows
(Applied Mathematical Sciences), Vol.
142
,
Springer
,
New York
.
36.
Boyd
,
J. P.
,
2001
,
Chebyshev & Fourier Spectral Methods
,
Dover Publications
,
New York
.
37.
Bridges
,
T. J.
, and
Morris
,
P. J.
,
1984
, “
Differential Eigenvalue Problems in Which the Parameter Appears Nonlinearly
,”
J. Comput. Phys.
,
55
(
3
), pp.
437
460
.
38.
Morris
,
P. J.
,
1992
, “
The Eigenvalue Spectrum of the Rayleigh Equation for a Plane Shear Layer
,”
Int. J. Numer. Methods Fluids
,
15
(12), pp.
1407
1415
.
39.
Boutilier
,
M. S. H.
, and
Yarusevych
,
S.
,
2013
, “
Sensitivity of Linear Stability Analysis of Measured Separated Shear Layers
,”
Eur. J. Mech., B/Fluids
,
37
, pp.
129
142
.
40.
Boutilier
,
M. S.
, and
Yarusevych
,
S.
,
2014
, “
Influence of Hot-Wire Probe and Traverse on Low-Reynolds-Number Airfoil Experiments
,”
AIAA J.
,
52
(
11
), pp.
2618
2623
.
41.
Wieneke
,
B.
,
2014
, “
Generic a Posteriori Uncertainty Quantification for PIV Vector Fields by Correlation Statistics
,”
17th International Symposium on Applications of Laser Techniques to Fluid Mechanics
, Lisbon, Portugal, July 7–10.http://ltces.dem.ist.utl.pt/lxlaser/lxlaser2014/finalworks2014/papers/03.5_2_560paper.pdf
42.
Ziadé
,
P.
, and
Sullivan
,
P. E.
,
2017
, “
Sensitivity of the Orr-Sommerfeld Equation to Base Flow Perturbations With Application to Airfoils
,”
Int. J. Heat Fluid Flow
,
67
(Part B), pp.
122
130
.
You do not currently have access to this content.