The setup of inlet conditions for a large eddy simulation (LES) is a complex and important problem. Normally, there are two methods to generate the inlet conditions for LES, i.e., synthesized turbulence methods and precursor simulation methods. This study presents a new method for determining inlet boundary conditions of LES using particle image velocimetry (PIV). LES shows sensitivity to inlet boundary conditions in the developing region, and this effect can even extend into the fully developed region of the flow. Two kinds of boundary conditions generated from PIV data, i.e., steady spatial distributed inlet (SSDI) and unsteady spatial distributed inlet (USDI), are studied. PIV provides valuable field measurement, but special care is needed to estimate turbulent kinetic energy and turbulent dissipation rate for SSDI. Correlation coefficients are used to analyze the autocorrelation of the PIV data. Different boundary conditions have different influences on LES, and their advantages and disadvantages for turbulence prediction and static pressure prediction are discussed in the paper. Two kinds of LES with different subgrid turbulence models are evaluated: namely dynamic Smagorinsky–Lilly model (Lilly model) and wall modeled large eddy simulation (WMLES model). The performances of these models for flow prediction in a square duct are presented. Furthermore, the LES results are compared with PIV measurement results and Reynolds-stress model (RSM) results at a downstream location for validation.

References

1.
Tabor
,
G. R.
, and
Baba-Ahmadi
,
M. H.
,
2010
, “
Inlet Conditions for Large Eddy Simulation: A Review
,”
Comput. Fluids
,
39
(
4
), pp.
553
567
.
2.
Aider
,
J. L.
, and
Danet
,
A.
,
2006
, “
Large-Eddy Simulation Study of Upstream Boundary Conditions Influence Upon a Backward-Facing Step Flow
,”
C. R. Méc.
,
334
(
7
), pp.
447
453
.
3.
Mathey
,
F.
,
Cokljat
,
D.
,
Bertoglio
,
J. P.
, and
Sergent
,
E.
,
2006
, “
Assessment of the Vortex Method for Large Eddy Simulation Inlet Conditions
,”
Prog. Comput. Fluid Dyn.
,
6
(
1/2/3
), pp.
58
67
.
4.
Lee
,
S.
,
Lele
,
S. K.
, and
Moin
,
P.
,
1992
, “
Simulation of Spatially Evolving Turbulence and the Applicability of Taylor's Hypothesis in Compressible Flow
,”
Phys. Fluids A
,
4
(
7
), pp.
1521
1530
.
5.
Di Mare
,
L.
,
Klein
,
M.
,
Jones
,
W. P.
, and
Janicka
,
J.
,
2006
, “
Synthetic Turbulence Inflow Conditions for Large-Eddy Simulation
,”
Phys. Fluids
,
18
(
2
), p.
025107
.
6.
Lund
,
T. S.
,
Wu
,
X.
, and
Squires
,
K. D.
,
1998
, “
Generation of Turbulent Inflow Data for Spatially-Developing Boundary Layer Simulations
,”
J. Comput. Phys.
,
140
(
2
), pp.
233
258
.
7.
Spalart
,
P. R.
,
1986
, “
Numerical Study of Sink-Flow Boundary Layers
,”
J. Fluid Mech.
,
172
(
1
), pp.
307
328
.
8.
Pierce
,
C. D.
, and
Moin
,
P.
,
1998
, “
Method for Generating Equilibrium Swirling Inflow Conditions
,”
AIAA J.
,
36
(
7
), pp.
1325
1327
.
9.
Sbrizzai
,
F.
,
Verzicco
,
R.
, and
Soldati
,
A.
,
2009
, “
Turbulent Flow and Dispersion of Inertial Particles in a Confined Jet Issued by a Long Cylindrical Pipe
,”
Flow Turbul. Combust.
,
82
(
1
), pp.
1
23
.
10.
Schlüter
,
J. U.
,
Pitsch
,
H.
, and
Moin
,
P.
,
2004
, “
Large-Eddy Simulation Inflow Conditions for Coupling With Reynolds-Averaged Flow Solvers
,”
AIAA J.
,
42
(
3
), pp.
478
484
.
11.
Drikakis
,
D.
,
2003
, “
Advances in Turbulent Flow Computations Using High-Resolution Methods
,”
Prog. Aerosp. Sci.
,
39
(
6–7
), pp.
405
424
.
12.
Baba-Ahmadi
,
M. H.
, and
Tabor
,
G.
,
2009
, “
Inlet Conditions for LES Using Mapping and Feedback Control
,”
Comput. Fluids
,
38
(
6
), pp.
1299
1311
.
13.
Ragni
,
D.
,
Van Oudheusden
,
B. W.
, and
Scarano
,
F.
,
2012
, “
3D Pressure Imaging of an Aircraft Propeller Blade-Tip Flow by Phase-Locked Stereoscopic PIV
,”
Exp. Fluids
,
52
(
2
), pp.
463
477
.
14.
Roloff
,
C.
,
Bordás
,
R.
,
Nickl
,
R.
,
Mátrai
,
Z.
,
Szaszák
,
N.
,
Szilárd
,
S.
, and
Thévenin
,
D.
,
2013
, “
Investigation of the Velocity Field in a Full-Scale Model of a Cerebral Aneurysm
,”
Int. J. Heat Fluid Flow
,
43
, pp.
212
219
.
15.
Cao
,
G.
,
Sivukari
,
M.
,
Kurnitski
,
J.
,
Ruponen
,
M.
, and
Seppänen
,
O.
,
2010
, “
Particle Image Velocimetry (PIV) Application in the Measurement of Indoor Air Distribution by an Active Chilled Beam
,”
Build. Environ.
,
45
(
9
), pp.
1932
1940
.
16.
Yoon
,
S. Y.
,
Ross
,
J. W.
,
Mench
,
M. M.
, and
Sharp
,
K. V.
,
2006
, “
Gas-Phase Particle Image Velocimetry (PIV) for Application to the Design of Fuel Cell Reactant Flow Channels
,”
J. Power Sources
,
160
(
2
), pp.
1017
1025
.
17.
Bellofiore
,
A.
,
Donohue
,
E. M.
, and
Quinlan
,
N. J.
,
2011
, “
Scale-Up of an Unsteady Flow Field for Enhanced Spatial and Temporal Resolution of PIV Measurements: Application to Leaflet Wake Flow in a Mechanical Heart Valve
,”
Exp. Fluids
,
51
(
1
), pp.
161
176
.
18.
Li
,
P.
,
Eckels
,
S. J.
,
Mann
,
G. W.
, and
Zhang
,
N.
,
2014
, “Experimental Measurements in Near-Wall Regions by Particle Image Velocimetry (PIV),”
ASME
Paper No. FEDSM2014-21918.
19.
Sharp
,
K. V.
,
Kim
,
K. C.
, and
Adrian
,
R.
,
2000
, “
Dissipation Estimation Around a Rushton Turbine Using Particle Image Velocimetry
,”
Laser Techniques Applied to Fluid Mechanics
,
Springer
,
Berlin
, pp.
337
354
.
20.
Saarenrinne
,
P.
, and
Piirto
,
M.
,
2000
, “
Turbulent Kinetic Energy Dissipation Rate Estimation From PIV Velocity Vector Fields
,”
Exp. Fluids
,
29
(
7
), pp.
S300
S307
.
21.
Maruyama
,
Y.
,
Tamura
,
T.
,
Okuda
,
Y.
, and
Ohashi
,
M.
,
2012
, “
LES of Turbulent Boundary Layer for Inflow Generation Using Stereo PIV Measurement Data
,”
J. Wind Eng. Ind. Aerodyn.
,
104–106
, pp.
379
388
.https://ac.els-cdn.com/S0167610512000700/1-s2.0-S0167610512000700-main.pdf?_tid=fee78d7a-1369-11e8-887a-00000aacb362&acdnat=1518820840_d1d2f8d952e00693fb3094f6008aeb7d
22.
Li
,
P.
,
Eckels
,
S. J.
,
Zhang
,
N.
, and
Mann
,
G. W.
,
2016
, “Effects of Parallel Processing on Large Eddy Simulations in ANSYS Fluent,”
ASME
Paper No. FEDSM2016-7884.
23.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
,
3
(
7
), pp.
1760
1765
.
24.
Shur
,
M. L.
,
Spalart
,
P. R.
,
Strelets
,
M. K.
, and
Travin
,
A. K.
,
2008
, “
A Hybrid RANS-LES Approach With Delayed-DES and Wall-Modelled LES Capabilities
,”
Int. J. Heat Fluid Flow
,
29
(
6
), pp.
1638
1649
.
25.
Meinhart
,
C. D.
,
Wereley
,
S. T.
, and
Gray
,
M. H. B.
,
2000
, “
Volume Illumination for Two-Dimensional Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
11
(
6
), p.
809
.
26.
TSI,
2014
, “
Insight 4G Software Manual, Revision B
,”
TSI Inc
.,
Shoreview, MN
.
27.
Westerweel
,
J.
, and
Scarano
,
F.
,
2005
, “
Universal Outlier Detection for PIV Data
,”
Exp. Fluids
,
39
(
6
), pp.
1096
1100
.
28.
Pope
,
S. B.
,
2001
,
Turbulence Flows
,
Cambridge University Press
,
Cambridge, UK
.
29.
Xu
,
D.
, and
Chen
,
J.
,
2013
, “
Accurate Estimate of Turbulent Dissipation Rate Using PIV Data
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
662
672
.
30.
Sreenivasan
,
K. R.
,
1995
, “
On the Universality of the Kolmogorov Constant
,”
Phys. Fluids
,
7
(
11
), pp.
2778
2784
.
31.
Edwards
,
A. L.
,
1976
,
An Introduction to Linear Regression and Correlation
,
W. H. Freeman
,
San Francisco, CA
.
32.
ANSYS,
2013
, “
ANSYS Fluent Theory Guide, Release 15.0
,”
ANSYS Inc
.,
Pittsburgh, PA
.
33.
Pedlosky
,
J.
,
2013
,
Geophysical Fluid Dynamics
,
Springer Science & Business Media
,
New York
.
34.
Batchelor
,
G. K.
,
1967
,
An Introduction to Fluid Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
35.
Speziale
,
C. G.
,
Sarkar
,
S.
, and
Gatski
,
T. B.
,
1991
, “
Modelling the Pressure-Strain Correlation of Turbulence: An Invariant Dynamical Systems Approach
,”
J. Fluid Mech.
,
227
(
1
), pp.
245
272
.
36.
VSJ,
2011
, “
ITTC–Recommended Procedures and Guidelines—Uncertainty Analysis for Particle Imaging Velocimetry (PIV)
,”
The Visualization Society of Japan
,
Tokyo, Japan
.
37.
Courant
,
R.
,
Friedrichs
,
K.
, and
Lewy
,
H.
,
1967
, “
On the Partial Difference Equations of Mathematical Physics
,”
IBM J. Res. Dev.
,
11
(
2
), pp.
215
234
.
You do not currently have access to this content.