According to several known experiments, an increase of the incoming flow air content can increase the hydrofoil lift coefficient. The presented theoretical study shows that such increase is associated with the decrease of the fluid density at the cavity surface. This decrease is caused by entrainment of air bubbles to the cavity from the surrounding flow. The theoretical results based on such explanation are in a good agreement with the earlier published experimental data for NACA0015.

References

1.
Kato
,
H.
,
Maeda
,
M.
, and
Yamagushi
,
H.
,
1993
, “
The Effect of Nuclei Density on Cavitation Inception of the Separated Flow on a Foil
,”
Cavitation Inception 1993
,
M. L.
Billet
and
W. B.
Morgan
, eds.,
ASME
,
New York
.
2.
Kawakami
,
D.
,
Qin
,
Q.
, and
Arndt
,
R. E. A.
,
2003
, “
Can Water Quality Affect the Lift Dynamics of Cavitating Hydrofoils?
,”
Fifth International Symposium on Cavitation
(
CAV
), Osaka, Japan, Nov. 1–4.
3.
Amromin
,
E. L.
,
2016
, “
Analysis of Cavitation Inception and Desinence Behind Surface Irregularities
,”
Phys. Fluids
,
28
(
7
), p.
075106
.
4.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
, Cambridge, UK.
5.
Yu
,
P.-W.
, and
Ceccio
,
S. L.
,
1997
, “
Diffusion Induced Bubble Population Downstream of a Partial Cavity
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
782
787
.
6.
Parkin
,
B. W.
, and
Kermeen
,
R. W.
, 1963, “
The Roles of Convective Air Diffusion and Liquid Tensile Stresses During Cavitation Inception
,” IAHR Symposium on Hydraulic Machinery and Cavitation, Sendai, Japan.
7.
Brennen
,
C. E.
, 1969, “
The Dynamic Balances of Dissolved Air and Heat in Natural Cavity Flow
,”
J. Fluid Mech.
,
37
(1), pp. 115–127.
8.
Parkin
,
B. W.
, and
Ravindra
,
K.
, 1991, “
Convective Gaseous Diffusion in Steady Axisymetric Cavity Flows
,”
ASME J. Fluids Eng.
,
113
(2), pp. 285–289.
9.
Kovinskaya
,
S. I.
,
2007
, “
Linear Waves in Bubbly Liquid and Equilibrium Bubble Size Distribution
,”
19th International Congress on Acoustics
, Madrid, Spain, Sept. 2–7.
10.
Blake
,
W. K.
,
1986
,
Mechanics of Flow-Induced Sound and Vibration
,
Academic Press
,
Orlando, FL
.
11.
Lee
,
I.-H.
,
Mäkiharju
,
S. A.
,
Ganesh
,
H.
, and
Ceccio
,
S. L.
,
2016
, “
Scaling of Gas Diffusion Into Limited Partial Cavities
,”
ASME J. Fluids Eng.
,
138
(
5
), p.
051301
.
12.
Amromin
,
E. L.
,
Bushkovskii
,
V. A.
, and
Dianov
,
D. I.
,
1983
, “
Developed Cavitation Behind a Disk in a Vertical Tube
,”
Fluid Dyn.
,
18
(5), pp.
816
820
.
13.
Yamaguchi
,
H.
, and
Kato
,
H.
,
1983
, “
Non-Linear Theory for Partially Cavitating Hydrofoils
,”
J. Soc. Nav. Arch. Jpn.
,
152
, pp.
117
124
.
14.
Coutier-Delgosha
,
O.
,
Deniset
,
F.
,
Astolfi
,
J. A.
, and
Leroux
,
J.-B.
,
2007
, “
Numerical Prediction of Cavitating Flow on a Two-Dimensional Symmetrical Hydrofoil and Comparison to Experiments
,”
ASME J. Fluids Eng.
,
129
, pp.
279
292
.
15.
Amromin
,
E. L.
, and
Vaciliev
,
A. V.
,
1994
, “
Determination of the Lift of the Partially Cavitating Hydrofoil
,”
Fluid Dyn.
,
29
(
6
), pp.
797
799
.
16.
Amromin
,
E. L.
,
2013
, “
Vehicle Drag Reduction With Control of Critical Reynolds Number
,”
ASME J. Fluids Eng.
,
135
(
10
), p.
101105
.
You do not currently have access to this content.