Abstract

As a propellant for hybrid rocket engines using liquid oxidizer and solid fuel and for liquid rocket engines, the use of self-pressurized fluids such as nitrous oxide has become widespread. Since these fluids can be self-pressurized by their high saturated vapor pressure, the propulsion system becomes smaller and simpler. However, this self-pressurization generally forms a gas–liquid two-phase flow by flashing or cavitation. This flow is considered highly unsteady because the temperature and pressure greatly change with the discharge process. In this study, unsteady flow characteristics due to self-pressurization were experimentally obtained by conducting many cold flow tests with carbon dioxide as self-pressurizing fluids. As a result, it was clarified that the fluid temperature dropped about 10–15 K with the pressure drop due to feedline pressure loss during the discharge process. From these experimental results, we estimated the bubble growth and void fraction change that would satisfy the temperature drop. In this paper, the obtained test results and estimated temperature drop are reported.

References

1.
Sutton
,
G. P.
, and
Biblarz
,
O.
,
2016
,
Rocket Propulsion Elements
, 9th ed.,
Wiley
, Hoboken,
NJ
.
2.
Chiaverini
,
M. J.
, and
Kou
,
K. K.
,
2007
,
Fundamentals of Hybrid Rocket Combustion and Propulsion
,
AIAA
, Reston,
VA
.
3.
Karabeyoglu
,
M. A.
,
Dyer
,
J.
,
Stevens
,
J.
, and
Cantwell
,
B.
,
2008
, “
Modeling of N2O Decomposition Events
,”
AIAA
Paper No. 2008-4933.10.2514/6.2008-4933
4.
Zakirov
,
V.
,
Sweeting
,
M.
,
Lawrence
,
T.
, and
Sellers
,
J.
,
2001
, “
Nitrous Oxide as a Rocket Propellant
,”
Acta Astronaut.
,
48
(
5–12
), pp.
353
362
.10.1016/S0094-5765(01)00047-9
5.
Tokudome
,
S.
,
Yagishita
,
T.
,
Habu
,
H.
,
Shimada
,
T.
, and
Daimo
,
Y.
,
2007
, “
Experimental Study of an N2O/Ethanol Propulsion System
,”
AIAA
Paper No. 2007-5464.10.2514/6.2007-5464
6.
Perry
,
M.
,
Hunt
,
A.
, and
Christian
,
S.
,
2020
, “
Ground Test Development of 800 lbf Nitrous Oxide-Ethane Bipropellant Engine
,”
AIAA
Paper No. 2020-3789.10.2514/6.2020-3789
7.
Kobald
,
M.
,
Fischer
,
U.
,
Tomilin
,
K.
,
Petrarolo
,
A.
, and
Schmierer
,
C.
,
2018
, “
Hybrid Experimental Rocket Stuttgart: A Low-Cost Technology Demonstrator
,”
AIAA J. Spacecr. Rockets
,
55
(
2
), pp.
484
500
.10.2514/1.A34035
8.
Karabeyoglu
,
M. A.
,
Zilwa
,
S. D.
,
Cantwell
,
B.
, and
Zilliac
,
G.
,
2005
, “
Modeling of Hybrid Rocket Low Frequency Instabilities
,”
AIAA J. Propul. Power
,
21
(
6
), pp.
1107
1116
.10.2514/1.7792
9.
Palacz
,
T.
,
2017
, “
Nitrous Oxide Application for Low-Thrust and Low-Cost Liquid Rocket Engine
,”
Seventh European Conference for Aeronautics and Space Sciences
,
Milan, Italy
, July 3–6, Paper No. EUCASS2017-474.https://www.eucass.eu/doi/EUCASS2017-474.pdf
10.
Schmierer
,
2019
, “
Analysis of a Hybrid Propulsion Lunar Sample Return Mission
,” Ph.D. thesis, Cologne, Germany, accessed July 1, 2021, https://elib.dlr.de/133092/1/2019%20Schmierer%20Dissertation.pdf
11.
Chandler
,
A. A.
,
Cantwell
,
J. B.
,
Hubbard
,
S. G.
, and
Karabeyoglu
,
A.
,
2011
, “
Feasibility of Single Port Hybrid Propulsion System for a Mars Ascent Vehicle
,”
Acta Astronaut.
,
69
(
11–12
), pp.
1066
1072
.10.1016/j.actaastro.2011.07.004
12.
Casalino
,
L.
, and
Pastrone
,
D.
,
2008
, “
Optimal Design of Hybrid Rocket Motors for Microgravity Platform
,”
AIAA J. Propul. Power
,
24
(
3
), pp.
491
498
.10.2514/1.30548
13.
Whitmore
,
S. A.
, and
Chandler
,
S. N.
,
2010
, “
Engineering Model for Self-Pressurizing Saturated-N2O-Propellant Feed Systems
,”
AIAA J. Propul. Power
,
26
(
4
), pp.
706
714
.10.2514/1.47131
14.
Nakata
,
D.
,
Yasuda
,
K.
,
Okada
,
K.
,
Higashino
,
K.
, and
Watanabe
,
R.
,
2018
, “
N2O Flow History Prediction in an Oxidizer Feed Line of Hybrid Rockets
,”
Trans. Jpn. Soc. Aeronaut. Space Sci., Aerosp. Technol. Jpn.
,
16
(
1
), pp.
81
87
.10.2322/tastj.16.81
15.
Sajben
,
M.
,
1961
, “
Adiabatic Flow of Flashing Liquids in Pipes
,”
ASME J. Basic Eng.
,
83
(
4
), pp.
619
630
.10.1115/1.3662281
16.
Le
,
Q. D.
,
Mereu
,
R.
,
Besagrni
,
G.
,
Dossena
,
V.
, and
Inzoli
,
F.
,
2018
, “
Computational Fluid Dynamics Modeling of Flashing Flow in Convergent-Divergent Nozzle
,”
ASME J. Fluids Eng.
,
140
(
10
), p.
101102
.10.1115/1.4039908
17.
Zhang
,
C. L.
, and
Yang
,
L.
,
2005
, “
Modeling of Supercritical CO2 Flow Through Short Tube Orifices
,”
ASME J. Fluids Eng.
,
127
(
6
), pp.
1194
1198
.10.1115/1.2060738
18.
Campbell
,
J.
,
Macklin
,
F.
, and
Thicksten
,
Z.
,
2008
, “
Handling Considerations of Nitrous Oxide in Hybrid Rocket Motor Testing
,”
AIAA
Paper No. 2008-4830.10.2514/6.2008-4830
19.
Zimmerman
,
J. E.
,
Cantwell
,
B.
, and
Zilliac
,
G.
, “
Initial Experimental Investigations of Self-Pressurizing Propellant Dynamics
,”
AIAA
Paper No, 2012-4198.10.2514/6.2012-4198
20.
Zimmerman
,
J. E.
, and
Cantwell
,
B.
,
2015
, “
Parametric Visualization Study of Self-Pressurizing Propellant Tank Dynamics
,”
AIAA
Paper No. 2015-3829.10.2514/6.2015-3829
21.
NIST
,
2018
, “
NIST Database
,” Gaithersburg, MD, accessed May 5, 2020, https://webbook.nist.gov/chemistry/
22.
Abernethy
,
R. B.
,
Benedict
,
R. P.
, and
Dowdell
,
R. B.
,
1985
, “
ASME Measurement Uncertainty
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
161
164
.10.1115/1.3242450
23.
Leung
,
J. C.
, and
Ciolek
,
W. H.
,
1994
, “
Flashing Flow Discharge of Initially Subcooled Liquid in Pipes
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
643
645
.10.1115/1.2910325
24.
Wallis
,
G. B.
,
1969
,
One Dimensional Two-Phase Flow
,
McGraw-Hill
,
New York
.
25.
Yasuda
,
K.
,
Nakata
,
D.
,
Uchiumi
,
M.
,
Okada
,
K.
, and
Imai
,
R.
,
2021
, “
Fundamental Study on Injector Flow Characteristics of Self-Pressurizing Fluid for Small Rocket Engines
,”
ASME J. Fluids Eng.
,
143
(
2
), p.
021307
.10.1115/1.4048688
You do not currently have access to this content.