Abstract

To investigate the unsteady flow characteristics in side channel pumps, the vortex structures and their evolutions in the impeller and side channel flow passages have been comprehensively studied. Systematically, three impeller schemes were designed with different ratios of convex blade height h to impeller blade length l (h/l = 0.2, 0.5, and 0.8) for detailed analysis. The findings indicated that the convex blade broadens the high-efficiency range and improves the efficiency at the best efficiency point (BEP) for scheme h/l = 0.2. Impeller scheme h/l = 0.2 records the highest vortex concentration region, scheme h/l = 0.5 displays as scattered spots, while scheme h/l = 0.8 exhibits significant flow pattern changes in the impeller. The vortex distribution area and vortex intensity in the lengthways between the impeller and side channel of h/I = 0.2 are almost analogous, but the other two impeller schemes have obvious separation and very chaotic. Although the shrinkages of axial vortexes in the impeller did not reflect on hydraulic performance, impeller schemes h/l = 0.5 and 0.8 provided an outstanding performance in reducing the pressure fluctuations. The objective of this study is to provide a theoretical basis for optimal design and analysis of strong vortex flows in side channel pumps.

References

1.
Appiah
,
D.
,
Zhang
,
F.
,
Yuan
,
S.
, and
Osman
,
M. K.
,
2018
, “
Effects of the Geometrical Conditions on the Performance of a Side Channel Pump: A Review
,”
Int. J. Energy Res.
,
42
(
2
), pp.
416
428
.10.1002/er.3803
2.
Shirinov
,
A.
, and
Oberbeck
,
S.
,
2011
, “
High Vacuum Side Channel Pump Working Against Atmosphere
,”
Vacuum
,
85
(
12
), pp.
1174
1177
.10.1016/j.vacuum.2010.12.018
3.
Shirinov
,
A.
, and
Oberbeck
,
S.
,
2011
, “
Optimization of the High Vacuum Side Channel Pump
,”
Proceedings of the Seventh International Conference on Compressors and Their Systems
,
London, UK
, Sept. 5–6, pp.
81
92
.10.1533/9780857095350.2.81
4.
Fleder
,
A.
, and
Böhle
,
M.
,
2019
, “
A Systematical Study of the Influence of Blade Number on the Performance of a Side Channel Pump
,”
ASME J. Fluids Eng.
,
141
(
11
), p.
111109
.10.1115/1.4043166
5.
Fleder
,
A.
, and
Böhle
,
M.
,
2015
, “
A Systematical Study of the Influence of Blade Length, Blade Width, and Side Channel Height on the Performance of a Side Channel Pump
,”
ASME J. Fluids Eng.
,
137
(
12
), p.
121102
.10.1115/1.4030897
6.
Zhang
,
F.
,
Fleder
,
A.
,
Böhle
,
M.
, and
Yuan
,
S.
,
2016
, “
Effect of Suction Side Blade Profile on the Performance of a Side Channel Pump
,”
Proc. Inst. Mech. Eng., Part A
,
230
(
6
), pp.
586
597
.10.1177/0957650916649329
7.
Zhang
,
F.
,
Böhle
,
M.
, and
Yuan
,
S. Q.
,
2017
, “
Experimental Investigation on the Performance of a Side Channel Pump Under Gas–Liquid Two-Phase Flow Operating Condition
,”
Proc. Inst. Mech. Eng., Part A
,
231
(
7
), pp.
645
653
.10.1177/0957650917713090
8.
Pei
,
J.
,
Zhang
,
F.
,
Appiah
,
D.
,
Hu
,
B.
,
Yuan
,
S.
,
Chen
,
K.
, and
Asomani
,
S. N.
,
2019
, “
Performance Prediction Based on Effects of Wrapping Angle of a Side Channel Pump
,”
Energies
,
12
(
1
), p.
139
.10.3390/en12010139
9.
Zhang
,
F.
,
Appiah
,
D.
,
Hong
,
F.
,
Zhang
,
J.
,
Yuan
,
S.
,
Adu-Poku
,
K. A.
, and
Wei
,
X.
,
2020
, “
Energy Loss Evaluation in a Side Channel Pump Under Different Wrapping Angles Using Entropy Production Method
,”
Int. Commun. Heat Mass Transfer
,
113
(
113
), p.
104526
.10.1016/j.icheatmasstransfer.2020.104526
10.
Wang
,
Y.
,
Zhang
,
F.
,
Yuan
,
S.
,
Chen
,
K.
,
Wei
,
X.
, and
Appiah
,
D.
,
2020
, “
Effect of UNRANS and Hybrid RANS-LES Turbulence Models on Unsteady Turbulent Flows Inside a Side Channel Pump
,”
ASME J. Fluids Eng.
,
142
(
6
), p.
061503
.10.1115/1.4045995
11.
Wei
,
X. Y.
,
Zhang
,
F.
, and
Appiah
,
D.
,
2019
, “
Pressure Fluctuation Reduction in Side Channel Pumps Using a Modified Impeller Blade
,”
ASME Paper No. AJKFluids2019-4932
.10.1115/AJKFluids2019-4932
12.
Zhang
,
F.
,
Appiah
,
D.
,
Zhang
,
J.
,
Yuan
,
S.
,
Osman
,
M. K.
, and
Chen
,
K.
,
2018
, “
Transient Flow Characterization in Energy Conversion of a Side Channel Pump Under Different Blade Suction Angle
,”
Energy
,
161
, pp.
635
648
.10.1016/j.energy.2018.07.152
13.
Pei
,
J.
,
Osman
,
M. K.
,
Wang
,
W.
,
Yuan
,
J.
,
Yin
,
T.
, and
Appiah
,
D.
,
2020
, “
Unsteady Flow Characteristics and Cavitation Prediction in the Double-Suction Centrifugal Pump Using a Novel Approach
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
234
(
3
), pp.
283
299
.10.1177/0957650919863636
14.
Li
,
X. J.
,
Chen
,
B.
,
Luo
,
X. W.
, and
Zhu
,
Z. C.
,
2020
, “
Effects of Flow Pattern on Hydraulic Performance and Energy Conversion Characterization in a Centrifugal Pump
,”
Renewable Energy
,
151
(
5
), pp.
475
487
.10.1016/j.renene.2019.11.049
15.
Li
,
X. J.
,
Shen
,
T. J.
,
Li
,
P. C.
,
Guo
,
X. M.
, and
Zhu
,
Z. C.
,
2020
, “
Extended Compressible Thermal Cavitation Model for the Numerical Simulation of Cryogenic Cavitating Flow
,”
Int. J. Hydrogen Energy
,
45
(
16
), pp.
10104
10118
.10.1016/j.ijhydene.2020.01.192
16.
Li
,
D. Y.
,
Fu
,
X. L.
,
Zuo
,
Z. G.
,
Wang
,
H. J.
,
Li
,
Z. G.
,
Liu
,
S. H.
, and
Wei
,
X. Z.
,
2019
, “
Investigation Methods for Analysis of Transient Phenomena concerning Design and Operation of Hydraulic-Machine Systems—a Review
,”
Renewable Sustainable Energy Rev.
,
101
, pp.
26
46
.10.1016/j.rser.2018.10.023
17.
Li
,
D. Y.
,
Qin
,
Y. L.
,
Zuo
,
Z. G.
,
Wang
,
H. J.
, and
Liu
,
S. H.
,
2019
, “
Numerical Simulation on Pump Transient Characteristic in a Model Pump Turbine
,”
ASME J. Fluids Eng.
,
141
(
11
), p. 111101.10.1115/1.4043496
18.
Tang
,
S. N.
,
Yuan
,
S. Q.
, and
Zhu
,
Y.
,
2020
, “
Deep Learning-Based Intelligent Fault Diagnosis Methods Towards Rotating Machinery
,”
IEEE Access
,
8
(
1
), pp.
9335
9346
.10.1109/ACCESS.2019.2963092
19.
Epps
,
B.
,
2017
, “
Review of Vortex Identification Methods
,”
AIAA Paper No. 2017–0989
.10.2514/6.2017-0989
20.
Minakov
,
A. V.
,
Platonov
,
D. V.
,
Dekterev
,
A. A.
,
Sentyabov
,
A. V.
, and
Zakharov
,
A. V.
,
2015
, “
The Analysis of Unsteady Flow Structure and Low Frequency Pressure Pulsations in the High-Head Francis Turbines
,”
Int. J. Heat Fluid Flow
,
53
, pp.
183
194
.10.1016/j.ijheatfluidflow.2015.04.001
21.
Mihalić
,
T.
,
Guzović
,
Z.
, and
Predin
,
A.
,
2013
, “
Performances and Flow Analysis in the Centrifugal Vortex Pump
,”
ASME J. Fluids Eng.
,
135
(
1
), p.
011107
.10.1115/1.4023198
22.
Liu
,
Y.
, and
Tan
,
L.
,
2018
, “
Tip Clearance on Pressure Fluctuation Intensity and Vortex Characteristic of a Mixed Flow Pump as Turbine at Pump Mode
,”
Renewable Energy
,
129
, pp.
606
615
.10.1016/j.renene.2018.06.032
23.
Chang
,
H.
,
Agarwal
,
R. K.
, and
Li
,
W.
,
2019
, “
Numerical and Experimental Study of a Vortex Structure and Energy Loss in a Novel Self-Priming Pump
,”
Processes
,
7
(
10
), p.
701
.10.3390/pr7100701
24.
Liu
,
C.
,
Gao
,
Y.-S.
,
Dong
,
X.-R.
,
Wang
,
Y.-Q.
,
Liu
,
J.-M.
,
Zhang
,
Y.-N.
,
Cai
,
X.-S.
, and
Gui
,
N.
,
2019
, “
Third Generation of Vortex Identification Methods: Omega and Liutex/Rortex Based Systems
,”
J. Hydrodyn.
,
31
(
2
), pp.
205
223
.10.1007/s42241-019-0022-4
25.
Liu
,
C. Q.
,
Wang
,
Y. Q.
,
Yang
,
Y.
, and
Duan
,
Z. W.
,
2016
, “
New Omega Vortex Identification Method
,”
Sci. China Phys., Mech. Astron.
,
59
(
8
), p.
684711
.10.1007/s11433-016-0022-6
26.
Liu
,
C.
,
Gao
,
Y.
,
Tian
,
S.
, and
Dong
,
X.
,
2018
, “
Rortex-A New Vortex Vector Definition and Vorticity Tensor and Vector Decompositions
,”
Phys. Fluids
,
30
(
3
), p.
035103
.10.1063/1.5023001
27.
Dong
,
X. R.
,
Gao
,
Y. S.
, and
Liu
,
C. Q.
,
2019
, “
New Normalized Rortex/Vortex Identification Method
,”
Phys. Fluids
,
31
(
1
), p.
011701
.10.1063/1.5066016
28.
Wang
,
Y. Q.
,
Gao
,
Y. S.
, and
Liu
,
C. Q.
,
2018
, “
Letter: Galilean Invariance of Rortex
,”
Phys. Fluids
,
30
(
11
), p.
111701
.10.1063/1.5058939
29.
Gao
,
Y. S.
, and
Liu
,
C. Q.
,
2018
, “
Rortex and Comparison With Eigenvalue-Based Vortex Identification Criteria
,”
Phys. Fluids
,
30
(
8
), p.
085107
.10.1063/1.5040112
30.
Dong
,
X. R.
,
Wang
,
Y. Q.
,
Chen
,
X. P.
,
Dong
,
Y. L.
,
Zhang
,
Y. N.
, and
Liu
,
C. Q.
,
2018
, “
Determination of Epsilon for Omega Vortex Identification Method
,”
J. Hydrodyn.
,
30
(
4
), pp.
541
548
.10.1007/s42241-018-0066-x
31.
Zhang
,
Y.-N.
,
Liu
,
K.-h.
,
Li
,
J.-W.
,
Xian
,
H.-Z.
, and
Du
,
X.-Z.
,
2018
, “
Analysis of the Vortices in the Inner Flow of Reversible Pump Turbine With the New Omega Vortex Identification Method
,”
J. Hydrodyn.
,
30
(
3
), pp.
463
469
.10.1007/s42241-018-0046-1
32.
Zhang
,
Y.-N.
,
Qiu
,
X.
,
Chen
,
F.-P.
,
Liu
,
K.-h.
,
Dong
,
X.-R.
, and
Liu
,
C.
,
2018
, “
A Selected Review of Vortex Identification Methods With Applications
,”
J. Hydrodyn.
,
30
(
5
), pp.
767
17
.10.1007/s42241-018-0112-8
33.
Menter
,
F. R.
, and
Egorov
,
Y.
,
2005
, “
A Scale Adaptive Simulation Model Using Two-Equation Models
,”
AIAA Paper No. 2005-1095
.10.2514/6.2005-1095
34.
Menter
,
F. R.
, and
Egorov
,
Y.
,
2010
, “
The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions—Part 1: Theory and Model Description
,”
Flow, Turbul. Combust.
,
85
(
1
), pp.
113
138
.10.1007/s10494-010-9264-5
35.
Chong
,
T. P.
,
Joseph
,
P.
, and
Gruber
,
M.
,
2012
, “
On the Airfoil Self-Noise Reduction by Trailing Edge Serrations of Non-Insertion Type
,”
AIAA Paper No. 2012-2185
.10.2514/6.2012-2185
36.
Feng
,
J. J.
,
Benra
,
F. K.
, and
Dohmen
,
H. J.
,
2011
, “
Investigation of Periodically Unsteady Flow in a Radial Pump by CFD Simulations and LDV Measurements
,”
ASME J. Turbomach.
,
133
(
1
), p.
011004
.10.1115/1.4000486
37.
Zhang
,
F.
,
Chen
,
K.
,
Appiah
,
D.
,
Hu
,
B.
,
Yuan
,
S.
, and
Asomani
,
S. N.
,
2019
, “
Numerical Delineation of 3D Unsteady Flow Fields in Side Channel Pumps for Engineering Processes
,”
Energies
,
12
(
7
), p.
1287
.10.3390/en12071287
You do not currently have access to this content.