Abstract

We present a novel analytical solution for Couette flows of incompressible Newtonian fluids in channels with a semi-elliptical cross section. The flow is steady, unidirectional, satisfies the no-slip condition at the boundaries, and is driven by the movement of the planar wall at constant velocity. The theoretical approach consists of a mapping function to rewrite the problem in an elliptical coordinate system coupled with Fourier's method for the solution of a Laplace equation with Dirichlet-type boundary conditions in the new domain. We then use our new solution together with available results for Poiseuille flows in a similar geometry (Alassar and Abushoshah, 2012, “Hagen–Poiseuille Flow in Semi-Elliptic Microchannels,” ASME J. Fluids Eng. 134(12), p. 124502) to study the so-called Couette–Poiseuille flows, where both pressure-driven and boundary-driven mechanisms act simultaneously. We present a detailed analysis of the flow field in Couette, Poiseuille, and Couette–Poiseuille flows in semi-elliptical channels with cross sections of different aspect ratios. For the latter case, we also determine the critical values of the axial pressure gradient that (i) increase the maximum flow velocity above that of the moving wall and shift its position toward the center of the channel, (ii) mark the onset of flow reversal with the emergence of a backflow region below the static wall, and (iii) eventually lead to a zero net flow rate through the channel.

References

1.
Yuan
,
R.
,
Lee
,
J.
,
Su
,
H.-W.
,
Levy
,
E.
,
Khudiyev
,
T.
,
Voldman
,
J.
, and
Fink
,
Y.
,
2018
, “
Microfluidics in Structured Multimaterial Fibers
,”
Proc. Natl. Acad. Sci.
,
115
(
46
), pp.
E10830
E10838
.10.1073/pnas.1809459115
2.
Bazaz
,
S. R.
,
Rouhi
,
O.
,
Raoufi
,
M. A.
,
Ejeian
,
F.
,
Asadnia
,
M.
,
Jin
,
D.
, and
Warkiani
,
M. E.
,
2020
, “
3D Printing of Inertial Microfluidic Devices
,”
Sci. Rep.
,
10
(
1
), pp.
1
14
.10.1038/s41598-020-62569-9
3.
Mihandoust
,
A.
,
Razavi Bazaz
,
S.
,
Maleki-Jirsaraei
,
N.
,
Alizadeh
,
M.
,
A Taylor
,
R.
, and
Ebrahimi Warkiani
,
M.
,
2020
, “
High-Throughput Particle Concentration Using Complex Cross-Section Microchannels
,”
Micromachines
,
11
(
4
), p.
440
.10.3390/mi11040440
4.
Tang
,
W.
,
Zhu
,
S.
,
Jiang
,
D.
,
Zhu
,
L.
,
Yang
,
J.
, and
Xiang
,
N.
,
2020
, “
Channel Innovations for Inertial Microfluidics
,”
Lab Chip
,
20
(
19
), pp.
3485
3502
.10.1039/D0LC00714E
5.
Cassineri
,
S.
,
Cioncolini
,
A.
,
Smith
,
L.
,
Curioni
,
M.
, and
Scenini
,
F.
,
2020
, “
Experiments on Liquid Flow Through Non-Circular Micro-Orifices
,”
Micromachines
,
11
(
5
), p.
510
.10.3390/mi11050510
6.
Yang
,
S.
,
Zhang
,
L.
, and
Xu
,
H.
,
2011
, “
Experimental Study on Convective Heat Transfer and Flow Resistance Characteristics of Water Flow in Twisted Elliptical Tubes
,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
2981
2991
.10.1016/j.applthermaleng.2011.05.030
7.
Su
,
L.
,
Duan
,
Z.
,
He
,
B.
,
Ma
,
H.
, and
Ding
,
G.
,
2019
, “
Laminar Flow and Heat Transfer in the Entrance Region of Elliptical Minichannels
,”
Int. J. Heat Mass Transfer
,
145
, p.
118717
.10.1016/j.ijheatmasstransfer.2019.118717
8.
Sarmiento
,
A. P. C.
,
Soares
,
V. H. T.
,
Milanez
,
F. H.
, and
Mantelli
,
M. B. H.
,
2020
, “
Heat Transfer Correlation for Circular and Non-Circular Ducts in the Transition Regime
,”
Int. J. Heat Mass Transfer
,
149
, p.
119165
.10.1016/j.ijheatmasstransfer.2019.119165
9.
Haque
,
M. E.
,
Hossain
,
M. S.
, and
Ali
,
H. M.
,
2021
, “
Laminar Forced Convection Heat Transfer of Nanofluids Inside Non-Circular Ducts: A Review
,”
Powder Technol.
,
378
, pp.
808
830
.10.1016/j.powtec.2020.10.042
10.
Thomas
,
J. H.
,
2019
, “
Fluid Dynamics of Cerebrospinal Fluid Flow in Perivascular Spaces
,”
J. R. Soc. Interface
,
16
(
159
), p.
20190572
.10.1098/rsif.2019.0572
11.
Tithof
,
J.
,
Kelley
,
D. H.
,
Mestre
,
H.
,
Nedergaard
,
M.
, and
Thomas
,
J. H.
,
2019
, “
Hydraulic Resistance of Periarterial Spaces in the Brain
,”
Fluids Barriers CNS
,
16
(
1
), pp.
1
13
.10.1186/s12987-019-0140-y
12.
Daversin-Catty
,
C.
,
Vinje
,
V.
,
Mardal
,
K.-A.
, and
Rognes
,
M. E.
,
2020
, “
The Mechanisms Behind Perivascular Fluid Flow
,”
PLoS One
,
15
(
12
), p.
e0244442
.10.1371/journal.pone.0244442
13.
Kelley
,
D. H.
,
2021
, “
Brain Cerebrospinal Fluid Flow
,”
Phys. Rev. Fluids
,
6
(
7
), p.
070501
.10.1103/PhysRevFluids.6.070501
14.
Baloga
,
S. M.
,
Mouginis-Mark
,
P. J.
, and
Glaze
,
L. S.
,
2003
, “
Rheology of a Long Lava Flow at Pavonis Mons, Mars
,”
J. Geophys. Res.: Planets
,
108
(
E7
), p.
5066
.10.1029/2002JE001981
15.
Lev
,
E.
, and
James
,
M. R.
,
2014
, “
The Influence of Cross-Sectional Channel Geometry on Rheology and Flux Estimates for Active Lava Flows
,”
Bull. Volcanol.
,
76
(
7
), pp.
1
15
.10.1007/s00445-014-0829-3
16.
Chevrel
,
M. O.
,
Pinkerton
,
H.
, and
Harris
,
A. J. L.
,
2019
, “
Measuring the Viscosity of Lava in the Field: A Review
,”
Earth-Sci. Rev.
,
196
, p.
102852
.10.1016/j.earscirev.2019.04.024
17.
Wang
,
C. Y.
,
1991
, “
Exact Solutions of the Steady-State Navier–Stokes Equations
,”
Annu. Rev. Fluid Mech.
,
23
(
1
), pp.
159
177
.10.1146/annurev.fl.23.010191.001111
18.
Chakraborty
,
G.
,
2008
, “
A Note on Methods for Analysis of Flow Through Microchannels
,”
Int. J. Heat Mass Transfer
,
51
(
17–18
), pp.
4583
4588
.10.1016/j.ijheatmasstransfer.2007.11.058
19.
Bahrami
,
M.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
,
2007
, “
A Novel Solution for Pressure Drop in Singly Connected Microchannels of Arbitrary Cross-Section
,”
Int. J. Heat Mass Transfer
,
50
(
13–14
), pp.
2492
2502
.10.1016/j.ijheatmasstransfer.2006.12.019
20.
Mortensen
,
N. A.
,
Okkels
,
F.
, and
Bruus
,
H.
,
2005
, “
Reexamination of Hagen–Poiseuille Flow: Shape Dependence of the Hydraulic Resistance in Microchannels
,”
Phys. Rev. E
,
71
(
5
), p.
057301
.10.1103/PhysRevE.71.057301
21.
Alassar
,
R.
,
2011
, “
Hagen–Poiseuille Flow in Tubes of Semi-Circular Cross-Sections
,”
2011 Fourth International Conference on Modeling, Simulation and Applied Optimization
, Kuala Lumpur, Malaysia, Apr. 19–21, pp.
1
2
.10.1109/ICMSAO.2011.5775524
22.
Alassar
,
R. S.
, and
Abushoshah
,
M.
,
2012
, “
Hagen–Poiseuille Flow in Semi-Elliptic Microchannels
,”
ASME J. Fluids Eng.
,
134
(
12
), p.
124502
.10.1115/1.4007900
23.
Wang
,
C. Y.
,
2015
, “
On Viscous Flow in Semi-Elliptic Ducts
,”
ASME J. Fluids Eng.
,
137
(
11
), p.
114502
.10.1115/1.4030898
24.
Alassar
,
R. S.
,
2014
, “
Fully Developed Forced Convection Through Semicircular Ducts
,”
J. Thermophys. Heat Transfer
,
28
(
3
), pp.
560
565
.10.2514/1.T4293
25.
Alassar
,
R.
,
2016
, “
Fully Developed Forced Convection Through Semi-Elliptic Ducts
,”
Appl. Math. Mech.
,
37
(
1
), pp.
37
44
.10.1007/s10483-016-2020-9
26.
Duan
,
Z.
, and
Muzychka
,
Y. S.
,
2007
, “
Slip Flow in Non-Circular Microchannels
,”
Microfluid. Nanofluid.
,
3
(
4
), pp.
473
484
.10.1007/s10404-006-0141-4
27.
Duan
,
Z.
, and
Muzychka
,
Y. S.
,
2007
, “
Slip Flow in Elliptic Microchannels
,”
Int. J. Therm. Sci.
,
46
(
11
), pp.
1104
1111
.10.1016/j.ijthermalsci.2007.01.026
28.
Tamayol
,
A.
, and
Hooman
,
K.
,
2011
, “
Slip-Flow in Microchannels of Non-Circular Cross Sections
,”
ASME J. Fluids Eng.
,
133
(
9
), p.
091202
.10.1115/1.4004591
29.
Alassar
,
R. S.
,
2017
, “
Slip Flow in Eccentric Annuli
,”
ASME J. Fluids Eng.
,
139
(
4
), p.
041201
.10.1115/1.4035115
30.
Wang
,
C. Y.
,
2012
, “
Brief Review of Exact Solutions for Slip-Flow in Ducts and Channels
,”
ASME J. Fluids Eng.
,
134
(
9
), p.
094501
.10.1115/1.4007232
31.
Middleman
,
S.
,
1965
, “
Flow of Power Law Fluids in Rectangular Ducts
,”
Trans. Soc. Rheol.
,
9
(
1
), pp.
83
93
.10.1122/1.549009
32.
Liu
,
T.-J.
, and
Chen
,
K.-C.
,
1987
, “
Generalized Couette Flow in Channels of Irregular Cross-Section
,”
J. Chin. Inst. Eng.
,
10
(
3
), pp.
345
352
.10.1080/02533839.1987.9676980
33.
Tamura
,
M. S.
,
Henderson
,
J. M.
,
Powell
,
R. L.
, and
Shoemaker
,
C. F.
,
1993
, “
Analysis of the Helical Screw Rheometer for Fluid Food
,”
J. Food Process Eng.
,
16
(
2
), pp.
93
126
.10.1111/j.1745-4530.1993.tb00164.x
34.
Marschik
,
C.
,
Roland
,
W.
, and
Miethlinger
,
J.
,
2018
, “
A Network-Theory-Based Comparative Study of Melt-Conveying Models in Single-Screw Extrusion: A Isothermal Flow
,”
Polymers
,
10
(
8
), pp.
929
22
.10.3390/polym10080929
35.
Rowell
,
H. S.
, and
Finlayson
,
D.
,
1922
, “
Screw Viscosity Pumps
,”
Engineering
,
114
, pp.
606
607
.https://archive.org/details/sim_engineering_1922-11-17_114_2968/page/606/mode/2up
36.
Rowell
,
H. S.
, and
Finlayson
,
D.
,
1928
, “
Screw Viscosity Pumps
,”
Engineering
,
126
, pp.
249
250
,
385
387
.
37.
Pricci
,
A.
,
de Tullio
,
M. D.
, and
Percoco
,
G.
,
2021
, “
Analytical and Numerical Models of Thermoplastics: A Review Aimed to Pellet Extrusion-Based Additive Manufacturing
,”
Polymers
,
13
(
18
), p.
3160
.10.3390/polym13183160
38.
Frigaard
,
I.
,
2019
, “
Simple Yield Stress Fluids
,”
Curr. Opin. Colloid Interface Sci.
,
43
, pp.
80
93
.10.1016/j.cocis.2019.03.002
39.
de Souza Mendes
,
P. R.
, and
Thompson
,
R. L.
,
2019
, “
Time-Dependent Yield Stress Materials
,”
Curr. Opin. Colloid Interface Sci.
,
43
, pp.
15
25
.10.1016/j.cocis.2019.01.018
40.
Siqueira
,
I. R.
,
Pasquali
,
M.
, and
de Souza Mendes
,
P. R.
,
2020
, “
Couette Flows of a Thixotropic Yield-Stress Material: Performance of a Novel Fluidity-Based Constitutive Model
,”
J. Rheol.
,
64
(
4
), pp.
889
898
.10.1122/8.0000041
41.
Cunha
,
J. P.
,
de Souza Mendes
,
P. R.
, and
Siqueira
,
I. R.
,
2020
, “
Pressure-Driven Flows of a Thixotropic Viscoplastic Material: Performance of a Novel Fluidity-Based Constitutive Model
,”
Phys. Fluids
,
32
(
12
), p.
123104
.10.1063/5.0031991
42.
Phillips
,
R. J.
,
Armstrong
,
R. C.
,
Brown
,
R. A.
,
Graham
,
A. L.
, and
Abbott
,
J. R.
,
1992
, “
A Constitutive Equation for Concentrated Suspensions That Accounts for Shear-Induced Particle Migration
,”
Phys. Fluids A: Fluid Dyn.
,
4
(
1
), pp.
30
40
.10.1063/1.858498
43.
Rebouças
,
R. B.
,
Siqueira
,
I. R.
,
de Souza Mendes
,
P. R.
, and
Carvalho
,
M. S.
,
2016
, “
On the Pressure-Driven Flow of Suspensions: Particle Migration in Shear Sensitive Liquids
,”
J. Non-Newtonian Fluid Mech.
,
234
, pp.
178
187
.10.1016/j.jnnfm.2016.06.001
44.
Siqueira
,
I. R.
, and
Carvalho
,
M. S.
,
2017
, “
Particle Migration in Planar Die-Swell Flows
,”
J. Fluid Mech.
,
825
, pp.
49
68
.10.1017/jfm.2017.373
45.
Siqueira
,
I. R.
, and
de Souza Mendes
,
P. R.
,
2019
, “
On the Pressure-Driven Flow of Suspensions: Particle Migration in Apparent Yield-Stress Fluids
,”
J. Non-Newtonian Fluid Mech.
,
265
, pp.
92
98
.10.1016/j.jnnfm.2019.02.002
46.
Nam
,
J.
,
Scriven
,
L. E.
, and
Carvalho
,
M. S.
,
2009
, “
Tracking Birth of Vortex in Flows
,”
J. Comput. Phys.
,
228
(
12
), pp.
4549
4567
.10.1016/j.jcp.2009.03.017
47.
Kwak
,
H.
, and
Nam
,
J.
,
2020
, “
Simple Criterion for Vortex Formation in the Channel Flow of Power-Law Fluids
,”
J. Non-Newtonian Fluid Mech.
,
284
, p.
104372
.10.1016/j.jnnfm.2020.104372
48.
Kwak
,
H.
, and
Nam
,
J.
,
2021
, “
Simple Methods for Obtaining Flow Reversal Conditions in Couette–Poiseuille Flows
,”
J. Rheol.
,
65
(
5
), pp.
1023
1033
.10.1122/8.0000290
49.
Siqueira
,
I. R.
,
Rebouças
,
R. B.
, and
Carvalho
,
M. S.
,
2017
, “
Particle Migration and Alignment in Slot Coating Flows of Elongated Particle Suspensions
,”
AIChE J.
,
63
(
7
), pp.
3187
3198
.10.1002/aic.15653
50.
Rebouças
,
R. B.
,
Siqueira
,
I. R.
, and
Carvalho
,
M. S.
,
2018
, “
Slot Coating Flow of Particle Suspensions: Particle Migration in Shear Sensitive Liquids
,”
J. Non-Newtonian Fluid Mech.
,
258
, pp.
22
31
.10.1016/j.jnnfm.2018.04.007
51.
Siqueira
,
I. R.
, and
Carvalho
,
M. S.
,
2019
, “
A Computational Study of the Effect of Particle Migration on the Low-Flow Limit in Slot Coating of Particle Suspensions
,”
J. Coat. Technol. Res.
,
16
(
6
), pp.
1619
1628
.10.1007/s11998-019-00196-4
You do not currently have access to this content.