Abstract

It is challenging to locate small-airway obstructions induced by chronic obstructive pulmonary disease (COPD) directly from visualization using available medical imaging techniques. Accordingly, this study proposes an innovative and noninvasive diagnostic method to detect obstruction locations using computational fluid dynamics (CFD) and convolutional neural network (CNN). Specifically, expiratory airflow velocity contours were obtained from CFD simulations in a subject-specific 3D tracheobronchial tree. One case representing normal airways and 990 cases associated with different obstruction sites were investigated using CFD. The expiratory airflow velocity contours at a selected cross section in the trachea were labeled and stored as the database for training and testing two CNN models, i.e., ResNet50 and YOLOv4. Gradient-weighted class activation mapping (Grad-CAM) and the Pearson correlation coefficient were employed and calculated to classify small-airway obstruction locations and pulmonary airflow pattern shifts and highlight the highly correlated regions in the contours for locating the obstruction sites. Results indicate that the airflow velocity pattern shifts are difficult to directly visualize based on the comparisons of CFD velocity contours. CNN results show strong relevance exists between the locations of the obstruction and the expiratory airflow velocity contours. The two CNN-based models are both capable of classifying the left lung, right lung, and both lungs obstructions well using the CFD simulated airflow contour images with total accuracy higher than 95.07%. The two automatic classification algorithms are highly transformative to clinical practice for early diagnosis of obstruction locations in the lung using the expiratory airflow velocity distributions, which could be imaged using hyperpolarized magnetic resonance imaging.

References

1.
Hamilton
,
B. E.
,
Hoyert
,
D. L.
,
Martin
,
J. A.
,
Strobino
,
D. M.
, and
Guyer
,
B.
,
2013
, “
Annual Summary of Vital Statistics: 2010–2011
,”
Pediatrics
,
131
(
3
), pp.
548
558
.10.1542/peds.2012-3769
2.
Yi
,
H.
,
Wang
,
Q.
, and
Feng
,
Y.
,
2021
, “
Computational Analysis of Obstructive Disease and Cough Intensity Effects on the Mucus Transport and Clearance in an Idealized Upper Airway Model Using the Volume of Fluid Method
,”
Phys. Fluids
,
33
(
2
), p.
021903
.10.1063/5.0037764
3.
Pramanik
,
S.
,
Mohanto
,
S.
,
Manne
,
R.
,
Rajendran
,
R. R.
,
Deepak
,
A.
,
Edapully
,
S. J.
,
Patil
,
T.
, and
Katari
,
O.
,
2021
, “
Nanoparticle-Based Drug Delivery System: The Magic Bullet for the Treatment of Chronic Pulmonary Diseases
,”
Mol. Pharm.
,
18
(
10
), pp.
3671
3718
.10.1021/acs.molpharmaceut.1c00491
4.
Rajendran
,
R. R.
, and
Banerjee
,
A.
,
2021
, “
Effect of Non-Newtonian Dynamics on the Clearance of Mucus From Bifurcating Lung Airway Models
,”
ASME J. Biomech. Eng.
,
143
(
2
), p. 021011.10.1115/1.4048474
5.
Jindal
,
S. K.
,
2012
, “
COPD: The Unrecognized Epidemic in India
,”
J. Assoc. Phys. India
,
60
, pp.
14
6
.https://europepmc.org/article/med/23155807
6.
Deepak
,
D.
,
Prasad
,
A.
,
Atwal
,
S. S.
, and
Agarwal
,
K.
,
2017
, “
Recognition of Small Airways Obstruction in Asthma and COPD—The Road Less Travelled
,”
J. Clin. Diagn. Res. JCDR
,
11
(
3
), pp.
TE01
TE05
.10.7860/JCDR/2017/19920.9478
7.
Burgel
,
P.-R.
,
Bergeron
,
A.
,
De Blic
,
J.
,
Bonniaud
,
P.
,
Bourdin
,
A.
,
Chanez
,
P.
,
Chinet
,
T.
,
Dalphin
,
J.-C.
,
Devillier
,
P.
,
Deschildre
,
A.
,
Didier
,
A.
,
Kambouchner
,
M.
,
Knoop
,
C.
,
Laurent
,
F.
,
Nunes
,
H.
,
Perez
,
T.
,
Roche
,
N.
,
Tillie-Leblond
,
I.
, and
Dusser
,
D.
,
2013
, “
Small Airways Diseases, Excluding Asthma and COPD: An Overview
,”
Eur. Respir. Rev.
,
22
(
128
), pp.
131
147
.10.1183/09059180.00001313
8.
Roos
,
J. E.
,
McAdams
,
H. P.
,
Kaushik
,
S. S.
, and
Driehuys
,
B.
,
2015
, “
Hyperpolarized Gas MR Imaging: Technique and Applications
,”
Magn. Reson. Imaging Clin.
,
23
(
2
), pp.
217
229
.10.1016/j.mric.2015.01.003
9.
Salerno
,
M.
,
Altes
,
T. A.
,
Brookeman
,
J. R.
,
De Lange
,
E. E.
, and
Mugler
,
J. P.
, III
,
2001
, “
Dynamic Spiral MRI of Pulmonary Gas Flow Using Hyperpolarized 3He: Preliminary Studies in Healthy and Diseased Lungs
,”
Magn. Reson. Med.
,
46
(
4
), pp.
667
677
.10.1002/mrm.1244
10.
Walkup
,
L. L.
,
Thomen
,
R. P.
,
Akinyi
,
T. G.
,
Watters
,
E.
,
Ruppert
,
K.
,
Clancy
,
J. P.
,
Woods
,
J. C.
, and
Cleveland
,
Z. I.
,
2016
, “
Feasibility, Tolerability and Safety of Pediatric Hyperpolarized 129 Xe Magnetic Resonance Imaging in Healthy Volunteers and Children With Cystic Fibrosis
,”
Pediatric Radiol.
,
46
(
12
), pp.
1651
1662
.10.1007/s00247-016-3672-1
11.
Walkup
,
L. L.
, and
Woods
,
J. C.
,
2014
, “
Translational Applications of Hyperpolarized 3He and 129Xe
,”
NMR Biomed.
,
27
(
12
), pp.
1429
1438
.10.1002/nbm.3151
12.
Sul
,
B.
,
Oppito
,
Z.
,
Jayasekera
,
S.
,
Vanger
,
B.
,
Zeller
,
A.
,
Morris
,
M.
,
Ruppert
,
K.
,
Altes
,
T.
,
Rakesh
,
V.
,
Day
,
S.
,
Robinson
,
R.
,
Reifman
,
J.
, and
Wallqvist
,
A.
,
2018
, “
Assessing Airflow Sensitivity to Healthy and Diseased Lung Conditions in a Computational Fluid Dynamics Model Validated In Vitro
,”
ASME J. Biomech. Eng.
,
140
(
5
), p. 051009.10.1115/1.4038896
13.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2016
, “
Deep Residual Learning for Image Recognition
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, Las Vegas, NV, June
27
30
.10.1109/CVPR.2016.90
14.
Bochkovskiy
,
A.
,
Wang
,
C.-Y.
, and
Liao
,
H.-Y. M.
,
2020
, “
Yolov4: Optimal Speed and Accuracy of Object Detection
,” arXiv Preprint arXiv:2004.10934.
15.
Daibo
,
M.
,
2017
, “
Toroidal Vector-Potential Transformer
,” Eleventh International Conference on Sensing Technology (
ICST
), IEEE, Sydney, New South Wales, Australia, Dec.
4
6
.10.1109/ICSensT.2017.8304422
16.
Li
,
Y.
,
Wang
,
H.
,
Dang
,
L. M.
,
Nguyen
,
T. N.
,
Han
,
D.
,
Lee
,
A.
,
Jang
,
I.
, and
Moon
,
H.
,
2020
, “
A Deep Learning-Based Hybrid Framework for Object Detection and Recognition in Autonomous Driving
,”
IEEE Access
,
8
, pp.
194228
194239
.10.1109/ACCESS.2020.3033289
17.
Sozzi
,
M.
,
Cantalamessa
,
S.
,
Cogato
,
A.
,
Kayad
,
A.
, and
Marinello
,
F.
,
2021
, “
Grape Yield Spatial Variability Assessment Using YOLOv4 Object Detection Algorithm
,”
Precision agriculture'21
,
Wageningen Academic Publishers
, Wageningen, The Netherlands, pp.
193
198
.
18.
Kajabad
,
E. N.
,
Begen
,
P.
,
Nizomutdinov
,
B.
, and
Ivanov
,
S.
,
2021
, “
YOLOv4 for Urban Object Detection: Case of Electronic Inventory in St. Petersburg
,” 2021 28th Conference of Open Innovations Association (
FRUCT
), IEEE, Moscow, Russia, Jan. 27-29. 10.23919/FRUCT50888.2021.9347622
19.
Cai
,
C.
,
Nishimura
,
T.
,
Hwang
,
J.
,
Hu
,
X. M.
, and
Kuroda
,
A.
,
2021
, “
Asbestos Detection With Fluorescence Microscopy Images and Deep Learning
,”
Sensors
,
21
(
13
), p.
4582
.10.3390/s21134582
20.
Chen
,
H.
,
Yuan
,
X.
,
Pei
,
Z.
,
Li
,
M.
, and
Li
,
J.
,
2019
, “
Triple-Classification of Respiratory Sounds Using Optimized S-Transform and Deep Residual Networks
,”
IEEE Access
,
7
, pp.
32845
32852
.10.1109/ACCESS.2019.2903859
21.
Young
,
H. M.
,
Guo
,
F.
,
Eddy
,
R. L.
,
Maksym
,
G.
, and
Parraga
,
G.
,
2018
, “
Oscillometry and Pulmonary MRI Measurements of Ventilation Heterogeneity in Obstructive Lung Disease: Relationship to Quality of Life and Disease Control
,”
J. Appl. Physiol.
,
125
(
1
), pp.
73
85
.10.1152/japplphysiol.01031.2017
22.
Westcott
,
A.
,
Capaldi
,
D. P.
,
McCormack
,
D. G.
,
Ward
,
A. D.
,
Fenster
,
A.
, and
Parraga
,
G.
,
2019
, “
Chronic Obstructive Pulmonary Disease: Thoracic CT Texture Analysis and Machine Learning to Predict Pulmonary Ventilation
,”
Radiology
,
293
(
3
), pp.
676
684
.10.1148/radiol.2019190450
23.
Labaki
,
W. W.
, and
Han
,
M. K.
,
2018
, “
Artificial Intelligence and Chest Imaging. Will Deep Learning Make Us Smarter?
,”
Am. J. Respir. Crit. Care Med.
,
197
(
2
), pp.
148
150
.10.1164/rccm.201709-1879ED
24.
González
,
G.
,
Ash
,
S. Y.
,
Vegas-Sánchez-Ferrero
,
G.
,
Onieva Onieva
,
J.
,
Rahaghi
,
F. N.
,
Ross
,
J. C.
,
Díaz
,
A.
,
San José Estépar
,
R.
, and
Washko
,
G. R.
,
2018
, “
Disease Staging and Prognosis in Smokers Using Deep Learning in Chest Computed Tomography
,”
Am. J. Respir. Crit. Care Med.
,
197
(
2
), pp.
193
203
.10.1164/rccm.201705-0860OC
25.
Xi
,
J.
,
Zhao
,
W.
,
Yuan
,
J. E.
,
Kim
,
J.
,
Si
,
X.
, and
Xu
,
X.
,
2015
, “
Detecting Lung Diseases From Exhaled Aerosols: Non-Invasive Lung Diagnosis Using Fractal Analysis and SVM Classification
,”
PLoS One
,
10
(
9
), p.
e0139511
.10.1371/journal.pone.0139511
26.
Xi
,
J.
, and
Zhao
,
W.
,
2019
, “
Correlating Exhaled Aerosol Images to Small Airway Obstructive Diseases: A Study With Dynamic Mode Decomposition and Machine Learning
,”
PLoS One
,
14
(
1
), p.
e0211413
.10.1371/journal.pone.0211413
27.
Feng
,
Y.
,
Zhao
,
J.
,
Kleinstreuer
,
C.
,
Wang
,
Q.
,
Wang
,
J.
,
Wu
,
D. H.
, and
Lin
,
J.
,
2018
, “
An in Silico Inter-Subject Variability Study of Extra-Thoracic Morphology Effects on Inhaled Particle Transport and Deposition
,”
J. Aerosol Sci.
,
123
, pp.
185
207
.10.1016/j.jaerosci.2018.05.010
28.
Haghnegahdar
,
A.
,
Zhao
,
J.
,
Kozak
,
M.
,
Williamson
,
P.
, and
Feng
,
Y.
,
2019
, “
Development of a Hybrid CFD-PBPK Model to Predict the Transport and Translocation of Xenon Gas From a Subject-Specific Human Respiratory System to Systemic Regions
,”
Heliyon
,
5
(
4
), p.
e01461
.10.1016/j.heliyon.2019.e01461
29.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbul., Heat Mass Transfer
,
4
(
1
), pp.
625
632
.https://www.semanticscholar.org/paper/Ten-Years-of-Industrial-Experience-with-the-SSTMenter-Kuntz/107feacb716406055c7aba4bddc3a6e8337c21c1
30.
Feng
,
Y.
,
Zhao
,
J.
,
Chen
,
X.
, and
Lin
,
J.
,
2017
, “
An in Silico Subject-Variability Study of Upper Airway Morphological Influence on the Airflow Regime in a Tracheobronchial Tree
,”
Bioengineering
,
4
(
4
), p.
90
.10.3390/bioengineering4040090
31.
Zhang
,
Z.
,
Kleinstreuer
,
C.
, and
Hyun
,
S.
,
2012
, “
Size-Change and Deposition of Conventional and Composite Cigarette Smoke Particles During Inhalation in a Subject-Specific Airway Model
,”
J. Aerosol Sci.
,
46
, pp.
34
52
.10.1016/j.jaerosci.2011.12.002
32.
Ren
,
S.
,
He
,
K.
,
Girshick
,
R.
, and
Sun
,
J.
,
2017
, “
Faster R-CNN: Towards Real-Time Object Detection With Region Proposal Networks
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
39
(
6
), pp.
1137
1149
.10.1109/TPAMI.2016.2577031
33.
Chen
,
Y.
,
Li
,
W.
,
Sakaridis
,
C.
,
Dai
,
D.
, and
Van Gool
,
L.
,
2018
, “
Domain Adaptive Faster R-CNN for Object Detection in the Wild
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, Salt Lake City, UT.
34.
Wu
,
M.
,
Yue
,
H.
,
Wang
,
J.
,
Huang
,
Y.
,
Liu
,
M.
,
Jiang
,
Y.
,
Ke
,
C.
, and
Zeng
,
C.
,
2020
, “
Object Detection Based on RGC Mask R-CNN
,”
IET Image Process.
,
14
(
8
), pp.
1502
1508
.10.1049/iet-ipr.2019.0057
35.
Sun
,
P.
,
Zhang
,
R.
,
Jiang
,
Y.
,
Kong
,
T.
,
Xu
,
C.
,
Zhan
,
W.
,
Tomizuka
,
M.
,
Li
,
L.
,
Yuan
,
Z.
,
Wang
,
C.
, and
Luo
,
P.
,
2021
, “
Sparse r-Cnn: End-to-End Object Detection With Learnable Proposals
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
.
36.
Hochreiter
,
S.
,
Bengio
,
Y.
,
Frasconi
,
P.
, and
Schmidhuber
,
J.
,
2001
, “
Gradient Flow in Recurrent Nets: The Difficulty of Learning Long-Term Dependencies
,”
A Field Guide to Dynamical Recurrent Neural Networks
,
IEEE Press
, Hoboken, NJ.
37.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
,
MIT Press
, Cambridge, MA.
38.
Deng
,
J.
,
Dong
,
W.
,
Socher
,
R.
,
Li
,
L. J.
,
Li
,
K.
, and
Li
,
F.
,
2009
, “
Imagenet: A Large-Scale Hierarchical Image Database
,”
IEEE Conference on Computer Vision and Pattern Recognition
,
IEEE
, Nashville, TN, June
20
25
.10.1109/CVPR.2009.5206848
39.
Redmon
,
J.
,
Divvala
,
S.
,
Girshick
,
R.
, and
Farhadi
,
A.
,
2016
, “
You Only Look Once: Unified, Real-Time Object Detection
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, Las Vegas, NV.
40.
Redmon
,
J.
, and
Farhadi
,
A.
,
2017
, “
YOLO9000: Better, Faster, Stronger
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, Honolulu, HI.
41.
Redmon
,
J.
, and
Farhadi
,
A.
,
2018
, “
Yolov3: An Incremental Improvement
,” arXiv Preprint arXiv:1804.02767.
42.
Wang
,
C. Y.
,
Liao
,
H. Y. M.
,
Wu
,
Y. H.
,
Chen
,
P. Y.
,
Hsieh
,
J. W.
, and
Yeh
,
I. H.
,
2020
, “
CSPNet: A New Backbone That Can Enhance Learning Capability of CNN
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
, in.
43.
Liu
,
S.
,
Qi
,
L.
,
Qin
,
H.
,
Shi
,
J.
, and
Jia
,
J.
,
2018
, “
Path Aggregation Network for Instance Segmentation
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
.
44.
Rajasegarar
,
S.
,
Leckie
,
C.
,
Palaniswami
,
M.
, and
Bezdek
,
J. C.
,
2007
, “
Quarter Sphere Based Distributed Anomaly Detection in Wireless Sensor Networks
,”
IEEE International Conference on Communications
,
IEEE
, Glasgow, UK, June
24
28
.10.1109/ICC.2007.637
45.
Shen
,
W. Z.
,
Michelsen
,
J. A.
, and
Sørensen
,
J. N.
,
2001
, “
Improved Rhie-Chow Interpolation for Unsteady Flow Computations
,”
AIAA J.
,
39
(
12
), pp.
2406
2409
.10.2514/2.1252
46.
Sural
,
S. G.
,
Qian
,
S.
, and
Pramanik
,
2002
, “
Segmentation and Histogram Generation Using the HSV Color Space for Image Retrieval
,”
Proceedings of International Conference on Image Processing
,
IEEE
, Rochester, NY.
47.
Dowdy
,
S.
,
Wearden
,
S.
, and
Chilko
,
D.
,
2011
,
Statistics for Research
, Vol.
512
,
Wiley
, Hoboken, NJ.
48.
Zhao
,
J.
,
Feng
,
Y.
,
Koshiyama
,
K.
, and
Wu
,
H.
,
2021
, “
Prediction of Airway Deformation Effect on Pulmonary Air-Particle Dynamics: A Numerical Study
,”
Phys. Fluids
,
33
(
10
), p.
101906
.10.1063/5.0065309
You do not currently have access to this content.