Abstract

During the atmospheric cruising of a hypersonic vehicle, the thermal and chemical nonequilibrium effects characterize the flow field within the shock layer. Therefore an understanding of nonequilibrium flow is essential for the efficient design of a hypersonic vehicle. The present numerical study uses various canonical configurations to study the thermochemical nonequilibrium effects in hypersonic flows. The present study investigates the influence of the vibration–dissociation (V–D) coupling method and the number of reactions on shock standoff distance (SSD), vibrational relaxation process, and surface properties. A finite volume method-based solver using the open-source platform openfoam has been developed to analyze the thermochemical nonequilibrium effects in the hypersonic flow field. The current results show that thermal and chemical nonequilibrium flow assumptions significantly affect SSD, and hence these assumptions are necessary to study the cases with a higher degree of nonequilibrium. The number of reactions influences the vibrational relaxation of diatomic gases in the air. At the same time, the V–D coupling method used to calculate reaction rate constants has a negligible impact on the vibrational relaxation process. Moreover, the V–D coupling method and the number of reactions marginally affect surface pressure. However, in the case of surface heat flux, the 11 reaction model predicts higher peak values than the 17 reaction model.

References

1.
Anderson
,
J. D.
,
2000
,
Hypersonic and High Temperature Gas Dynamics
,
AIAA
, Reston, VA.
2.
Wen
,
C. Y.
, and
Hornung
,
H. G.
,
1995
, “
Non-Equilibrium Dissociating Flow Over Spheres
,”
J. Fluid Mech.
,
299
, pp.
389
405
.10.1017/S0022112095003545
3.
Belouaggadia
,
N.
,
Olivier
,
H.
, and
Brun
,
R.
,
2008
, “
Numerical and Theoretical Study of the Shock Stand-Off Distance in Non-Equilibrium Flows
,”
J. Fluid Mech.
,
607
, pp.
167
197
.10.1017/S0022112008001973
4.
Kianvashrad
,
N.
, and
Knight
,
D. D.
,
2019
, “
Nonequilibrium Effects on Prediction of Aerothermodynamic Loading for a Double Cone
,”
AIAA J.
,
57
(
7
), pp.
2946
2963
.10.2514/1.J057883
5.
Bensassi
,
K.
, and
Brandis
,
A. M.
,
2019
, “
Time Accurate Simulation of Nonequilibrium Flow Inside the Nasa Ames Electric Arc Shock Tube
,”
AIAA
Paper No. 2019-0798.10.2514/6.2019-0798
6.
Streicher
,
J. W.
,
Krish
,
A.
,
Wang
,
S.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2019
, “
Measurements of Oxygen Vibrational Relaxation and Dissociation Using Ultraviolet Laser Absorption in Shock Tube Experiments
,”
AIAA
Paper No. 2019-0795.10.2514/6.2019-0795
7.
Han
,
S.
,
Lee
,
S.
, and
Lee
,
B. J.
,
2020
, “
Numerical Analysis of Thermochemical Nonequilibrium Flows in a Model Scramjet Engine
,”
Energies
,
13
(
3
), p.
606
.10.3390/en13030606
8.
Korte
,
J.
, and
Lafferty
,
J. F.
,
2021
, “
Determination of Hypervelocity Freestream Conditions for a Vibrationally Frozen Nitrogen Flow
,”
AIAA
Paper No. 2021-0981.10.2514/6.2021-0981
9.
Zinchenko
,
V. I.
,
Gol'din
,
V. D.
, and
Zverev
,
V. G.
,
2018
, “
Numerical Investigation of Thermal Protection of Hypersonic Flying Vehicles
,”
Thermophys. Aeromech.
,
25
(
3
), pp.
359
366
.10.1134/S0869864318030046
10.
Karimi
,
M. S.
, and
Oboodi
,
M. J.
,
2019
, “
Investigation and Recent Developments in Aerodynamic Heating and Drag Reduction for Hypersonic Flows
,”
Heat Mass Transfer
,
55
(
2
), pp.
547
569
.10.1007/s00231-018-2416-1
11.
Hua
,
S. H. E. N.
, and
Chih-Yung
,
W. E. N.
,
2018
, “
Theoretical Investigation of Shock Stand-Off Distance for Non-Equilibrium Flows Over Spheres
,”
Chin. J. Aeronaut.
,
31
(
5
), pp.
990
996
.10.1016/j.cja.2018.02.013
12.
Kim
,
J. G.
,
Kang
,
S. H.
, and
Park
,
S. H.
,
2020
, “
Thermochemical Nonequilibrium Modeling of Oxygen in Hypersonic Air Flows
,”
Int. J. Heat Mass Transfer
,
148
, p.
119059
.10.1016/j.ijheatmasstransfer.2019.119059
13.
Moreira
,
F. C.
,
Wolf
,
W. R.
, and
Azevedo
,
J. L. F.
,
2021
, “
Thermal Analysis of Hypersonic Flows of Carbon Dioxide and Air in Thermodynamic Non-Equilibrium
,”
Int. J. Heat Mass Transfer
,
165
, p.
120670
.10.1016/j.ijheatmasstransfer.2020.120670
14.
Chen
,
S.
,
Sun
,
Q.
,
Klioutchnikov
,
I.
, and
Olivier
,
H.
,
2019
, “
Numerical Study of Chemically Reacting Flow in a Shock Tube Using a High-Order Point-Implicit Scheme
,”
Comput. Fluids
,
184
, pp.
107
118
.10.1016/j.compfluid.2019.02.019
15.
Chandel
,
D.
,
Nompelis
,
I.
, and
Candler
,
G. V.
,
2020
, “
Numerical Simulations of Shock Propagation Under Strong Nonequilibrium Conditions
,”
J. Thermophys. Heat Transfer
,
34
(
3
), pp.
556
569
.10.2514/1.T5882
16.
Desai
,
S.
,
Kulkarni
,
V.
, and
Gadgil
,
H.
,
2016
, “
Delusive Influence of Nondimensional Numbers in Canonical Hypersonic Nonequilibrium Flows
,”
J. Aerosp. Eng.
,
29
(
5
), p.
04016030
.10.1061/(ASCE)AS.1943-5525.0000620
17.
Knisely
,
C. P.
, and
Zhong
,
X.
,
2020
, “
Impact of Vibrational Nonequilibrium on the Supersonic Mode in Hypersonic Boundary Layers
,”
AIAA J.
,
58
(
4
), pp.
1704
1714
.10.2514/1.J058758
18.
Yu
,
Y. L.
,
Li
,
X. D.
,
Wang
,
Z. H.
, and
Bao
,
L.
,
2020
, “
Theoretical Modeling of Heat Transfer to Flat Plate Under Vibrational Excitation Freestream Conditions
,”
Int. J. Heat Mass Transfer
,
151
, p.
119434
.10.1016/j.ijheatmasstransfer.2020.119434
19.
MacLean
,
M.
,
Holden
,
M.
, and
Dufrene
,
A.
,
2014
, “
Comparison Between CFD and Measurements for Real-Gas Effects on Laminar Shock Wave Boundary Layer Interaction, I. Oral Presentation
,” Atlanta, GA, accessed July 2020, https://www.cubrc.org/_iassets/docs/CUBRC_laminar_Atlanta.pdf
20.
Kianvashrad
,
N.
, and
Knight
,
D.
,
2017
, “
Simulation of Hypersonic Shock-Wave–Laminar-Boundary-Layer Interaction on Hollow Cylinder Flare
,”
AIAA J.
,
55
(
1
), pp.
322
326
.10.2514/1.J055258
21.
Shoev
,
G.
,
Oblapenko
,
G.
,
Kunova
,
O.
,
Mekhonoshina
,
M.
, and
Kustova
,
E.
,
2018
, “
Validation of Vibration-Dissociation Coupling Models in Hypersonic Non-Equilibrium Separated Flows
,”
Acta Astronaut.
,
144
, pp.
147
159
.10.1016/j.actaastro.2017.12.023
22.
Zhao
,
Y.
, and
Huang
,
H.
,
2020
, “
Numerical Study of Hypersonic Surface Heat Flux With Different Air Species Models
,”
Acta Astronaut.
,
169
, pp.
84
93
.10.1016/j.actaastro.2020.01.002
23.
Bouyahiaoui
,
Z.
,
Haoui
,
R.
, and
Zidane
,
A.
,
2020
, “
Numerical Investigation of a Hypersonic Flow Around a Capsule in CO2–N2 Environment
,”
Eur. J. Mech.-B/Fluids
,
80
, pp.
146
156
.10.1016/j.euromechflu.2019.12.009
24.
Fiévet
,
R.
,
Koo
,
H.
, and
Raman
,
V.
,
2015
, “
Numerical Simulation of a Scramjet Isolator With Thermodynamic Nonequilibrium
,”
AIAA
Paper No. 2015-3418.10.2514/6.2015-3418
25.
Fiévet
,
R.
, and
Raman
,
V.
,
2018
, “
Effect of Vibrational Nonequilibrium on Isolator Shock Structure
,”
J. Propul. Power
,
34
(
5
), pp.
1334
1344
.10.2514/1.B37108
26.
Gehre
,
R. M.
,
Wheatley
,
V.
, and
Boyce
,
R. R.
,
2013
, “
Computational Investigation of Thermal Nonequilibrium Effects in Scramjet Geometries
,”
J. Propul. Power
,
29
(
3
), pp.
648
660
.10.2514/1.B34722
27.
Fiévet
,
R.
,
Voelkel
,
S.
,
Koo
,
H.
,
Raman
,
V.
, and
Varghese
,
P. L.
,
2017
, “
Effect of Thermal Nonequilibrium on Ignition in Scramjet Combustors
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
2901
2910
.10.1016/j.proci.2016.08.066
28.
Zeitoun
,
D.
,
Schall
,
E.
,
Burtschell
,
Y.
, and
Druguet
,
M. C.
,
1995
, “
Vibration-Dissociation Coupling in Nonequilibrium Hypersonic Viscous Flows
,”
AIAA J.
,
33
(
1
), pp.
79
85
.10.2514/3.12335
29.
Park
,
C.
,
1988
, “
Assessment of a Two-Temperature Kinetic Model for Dissociating and Weakly Ionizing Nitrogen
,”
J. Thermophys. Heat Transfer
,
2
(
1
), pp.
8
16
.10.2514/3.55
30.
Liao
,
D.
,
Liu
,
S.
,
Huang
,
J.
,
Jian
,
H.
,
Xie
,
A.
, and
Wang
,
Z.
,
2020
, “
Measurement and Numerical Simulation of Shock Standoff Distances Over Hypersonic Spheres in CO2 in a Ballistic Range
,”
Shock Waves
,
30
(
2
), pp.
131
138
.10.1007/s00193-019-00923-1
31.
Wang
,
X. Y.
,
Yan
,
C.
,
Zheng
,
Y. K.
, and
Li
,
E. L.
,
2017
, “
Assessment of Chemical Kinetic Models on Hypersonic Flow Heat Transfer
,”
Int. J. Heat Mass Transfer
,
111
, pp.
356
366
.10.1016/j.ijheatmasstransfer.2017.03.102
32.
Hao
,
J.
,
Wang
,
J.
, and
Lee
,
C.
,
2016
, “
Numerical Study of Hypersonic Flows Over Reentry Configurations With Different Chemical Nonequilibrium Models
,”
Acta Astronaut.
,
126
, pp.
1
10
.10.1016/j.actaastro.2016.04.014
33.
Ghezali
,
Y.
,
Haoui
,
R.
, and
Chpoun
,
A.
,
2019
, “
Study of Physico-Chemical Phenomena in a Non-Equilibrium Hypersonic Air Flow Behind a Strong Shock Wave
,”
Thermophys. Aeromech.
,
26
(
5
), pp.
693
710
.10.1134/S086986431905007X
34.
Tchuen
,
G.
, and
Zeitoun
,
D. E.
,
2008
, “
Computation of Weakly Ionized Air Flow in Thermochemical Nonequilibrium Over Sphere–Cones
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1393
1401
.10.1016/j.ijheatfluidflow.2008.06.002
35.
Casseau
,
V.
,
2017
, “An Open-Source CFD Solver for Planetary Entry,” Ph.D. thesis,
University of Strathclyde
, Glasgow , UK.
36.
Greenshields
,
C. J.
,
Weller
,
H. G.
,
Gasparini
,
L.
, and
Reese
,
J. M.
,
2009
, “
Implementation of Semi‐Discrete, Non‐Staggered Central Schemes in a Colocated, Polyhedral, Finite Volume Framework, for High‐Speed Viscous Flows
,”
Int. J. Numer. Methods Fluids
,
63
(
1
), pp.
n/a
21
.10.1002/fld.2069
37.
Wilke
,
C. R.
,
1950
, “
A Viscosity Equation for Gas Mixtures
,”
J. Chem. Phys.
,
18
(
4
), pp.
517
519
.10.1063/1.1747673
38.
Blottner
,
F. G.
,
Johnson
,
M.
, and
Ellis
,
M.
,
1971
, “
Chemically Reacting Viscous Flow Program for Multi-Component Gas Mixtures
,” Sandia Labs., Albuquerque, NM, Report No. No. SC-RR-70-754.
39.
Millikan
,
R. C.
, and
White
,
D. R.
,
1963
, “
Systematics of Vibrational Relaxation
,”
J. Chem. Phys.
,
39
(
12
), pp.
3209
3213
.10.1063/1.1734182
40.
Kurganov
,
A.
, and
Tadmor
,
E.
,
2000
, “
New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection–Diffusion Equations
,”
J. Comput. Phys.
,
160
(
1
), pp.
241
282
.10.1006/jcph.2000.6459
41.
Kurganov
,
A.
,
Noelle
,
S.
, and
Petrova
,
G.
,
2001
, “
Semidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton–Jacobi Equations
,”
SIAM J. Sci. Comput.
,
23
(
3
), pp.
707
740
.10.1137/S1064827500373413
42.
Scanlon
,
T. J.
,
White
,
C.
,
Borg
,
M. K.
,
Palharini
,
R. C.
,
Farbar
,
E.
,
Boyd
,
I. D.
,
Reese
,
J. M.
, and
Brown
,
R. E.
,
2015
, “
Open-Source Direct Simulation Monte Carlo Chemistry Modeling for Hypersonic Flows
,”
AIAA J.
,
53
(
6
), pp.
1670
1680
.10.2514/1.J053370
43.
Nonaka
,
S.
,
Mizuno
,
H.
,
Takayama
,
K.
, and
Park
,
C.
,
2000
, “
Measurement of Shock Standoff Distance for Sphere in Ballistic Range
,”
J. Thermophys. Heat Transfer
,
14
(
2
), pp.
225
229
.10.2514/2.6512
44.
Furumoto
,
G. H.
,
Zhong
,
X.
, and
Skiba
,
J. C.
,
1997
, “
Numerical Studies of Real‐Gas Effects on Two‐Dimensional Hypersonic Shock‐Wave/Boundary‐Layer Interaction
,”
Phys. Fluids
,
9
(
1
), pp.
191
210
.10.1063/1.869162
45.
Furudate
,
M.
,
Nonaka
,
S.
, and
Sawada
,
K.
,
1999
, “
Behavior of Two-Temperature Model in Intermediate Hypersonic Regime
,”
J. Thermophys. Heat Transfer
,
13
(
4
), pp.
424
430
.10.2514/2.6480
46.
Grossman
,
B.
, and
Cinnella
,
P.
,
1990
, “
Flux-Split Algorithms for Flows With Non-Equilibrium Chemistry and Vibrational Relaxation
,”
J. Comput. Phys.
,
88
(
1
), pp.
131
168
.10.1016/0021-9991(90)90245-V
47.
Gordon
,
S.
, and
McBride
,
B. J.
,
1994
, “
Computer Program for Calculation of Complex Chemical Equilibrium Composition and Applications
,” National Aeronautics and Space Administration, Cleveland, Report No. NASA No. 1331.
48.
Bussing
,
T. R.
, and
Eberhardt
,
S.
,
1989
, “
Chemistry Associated With Hypersonic Vehicles
,”
J. Thermophys. Heat Transfer
,
3
(
3
), pp.
245
253
.10.2514/3.28772
49.
Hao
,
J.
,
Wang
,
J.
, and
Lee
,
C.
,
2017
, “
Assessment of Vibration–Dissociation Coupling Models for Hypersonic Nonequilibrium Simulations
,”
Aerosp. Sci. Technol.
,
67
, pp.
433
442
.10.1016/j.ast.2017.04.027
50.
Olejniczak
,
J.
, and
Candler
,
G. V.
,
1995
, “
Vibrational Energy Conservation With Vibration–Dissociation Coupling: General Theory and Numerical Studies
,”
Phys. Fluids
,
7
(
7
), pp.
1764
1774
.10.1063/1.868491
You do not currently have access to this content.