Abstract

The impetus of the present bio-inspired work is to investigate the impact of simultaneously using wavy leading-edge (WLE) airfoils in combination with curved multidielectric barrier discharge (DBD) plasma actuators as hybrid passive and active flow control mechanisms, respectively. A precise distinction of the produced frequency and noise signals, altogether with the acoustic effect of using WLE and DBD plasma actuators, is herein analyzed with precision. Two specific DBD plasma actuators are designed to actuate at x/C = 3% and x/C = 30% on a NACA 634-021 airfoil with sinusoidal WLE that bears a wavelength of 25% and an amplitude of 5% of the mean chord length and straight-leading-edge (SLE). A large eddy simulation (LES) turbulence model was used. This includes the dynamic control of unsteady flow separation, the three-dimensional vortical structure and induced trains of vortices, the aerodynamic forces, the velocity variation, and also the spanwise flow. The momentum transfer between the main flow and boundary layer was improved by the DBDs-induced vortices train and formed streamwise counter-rotating pair-of-vortices over the tubercle. Also, both the continuous wavelet transform (CWT) and fast Fourier transform (FFT) methods were used to investigate the induced plasma flow spectral content for the WLE and SLE geometries. We witnessed an optimized flow control, by using DBD plasma actuators with the WLE airfoil, that resulted in less massive flow separation, faster turbulent transition, and a robust earlier flow reattachment. This modification was beneficial in increasing the efficiency and decreasing the noise for low Reynolds number operational conditions.

References

1.
Cho
,
Y. C.
, and
Shyy
,
W.
,
2011
, “
Adaptive Flow Control of low-Reynolds Number Aerodynamics Using Dielectric Barrier Discharge Actuator
,”
Prog. Aerosp. Sci.
,
47
(
7
), pp.
495
521
.10.1016/j.paerosci.2011.06.005
2.
Abdollahzadeh
,
M.
,
Pascoa
,
J. C.
, and
Oliveira
,
P. J.
,
2018
, “
Comparison of DBD Plasma Actuators Flow Control Authority in Different Modes of Actuation
,”
Aerosp. Sci. Technol.
,
78
, pp.
183
196
.10.1016/j.ast.2018.04.013
3.
Rodrigues
,
F. F.
, and
Pascoa
,
J. C.
,
2020
, “
Implementation of Stair-Shaped Dielectric Layers in Micro-and Macroplasma Actuators for Increased Efficiency and Lifetime
,”
ASME J. Fluids Eng.
,
142
(
10
), p.
104502
.10.1115/1.4047800
4.
Rodrigues
,
F.
,
Abdollahzadeh
,
M.
,
Pascoa
,
J. C.
, and
Oliveira
,
P. J.
,
2021
, “
An Experimental Study on Segmented-Encapsulated Electrode Dielectric-Barrier-Discharge Plasma Actuator for Mapping Ice Formation on a Surface: A Conceptual Analysis
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
1
), p.
011701
.10.1115/1.4048252
5.
Harouni
,
A. G.
,
2014
, “
Flow Control of a Boundary Layer Ingesting Serpentine Diffuser Via Blowing and Suction
,”
Aerosp. Sci. Technol.
,
39
, pp.
472
480
.10.1016/j.ast.2014.05.016
6.
Moreau
,
E.
,
2007
, “
Airflow Control by Non-Thermal Plasma Actuators
,”
J. Phys. D
,
40
(
3
), pp.
605
636
.10.1088/0022-3727/40/3/S01
7.
Yu
,
H.
, and
Zheng
,
J.
,
2020
, “
Numerical Investigation of Control of Dynamic Stall Over a NACA0015 Airfoil Using Dielectric Barrier Discharge Plasma Actuators
,”
Phys. Fluids
,
32
(
3
), p.
035103
.10.1063/1.5142465
8.
Post
,
M. L.
, and
Corke
,
T. C.
,
2004
, “
Separation Control on High Angle of Attack Airfoil Using Plasma Actuators
,”
AIAA J.
,
42
(
11
), pp.
2177
2184
.10.2514/1.2929
9.
Benard
,
N.
,
Jolibois
,
J.
, and
Moreau
,
E.
,
2009
, “
Lift and Drag Performances of an Axisymmetric Airfoil Controlled by Plasma Actuator
,”
J. Electrost.
,
67
(
2–3
), pp.
133
139
.10.1016/j.elstat.2009.01.008
10.
Pendar
,
M. R.
, and
Pascoa
,
J.
,
2021
, “
Study of the Plasma Actuator Effect on the Flow Characteristics of an Airfoil: An LES Investigation
,”
SAE Int. J. Adv. Curr. Pract. Mobil.
,
3
(
2021-01-0016
), pp.
1206
1215
.10.4271/2021-01-0016
11.
Guoqiang
,
L.
,
Weiguo
,
Z.
,
Yubiao
,
J.
, and
Pengyu
,
Y.
,
2019
, “
Experimental Investigation of Dynamic Stall Flow Control for Wind Turbine Airfoils Using a Plasma Actuator
,”
Energy
,
185
, pp.
90
101
.10.1016/j.energy.2019.07.017
12.
Zhang
,
X.
,
Cui
,
Y. D.
, and
Li
,
H. X.
,
2021
, “
Acoustic Streaming Flow Generated by Surface Dielectric Barrier Discharge in Quiescent Air
,”
Phys. Fluids
,
33
(
5
), p.
057117
.10.1063/5.0049420
13.
Sato
,
M.
,
Okada
,
K.
,
Asada
,
K.
,
Aono
,
H.
,
Nonomura
,
T.
, and
Fujii
,
K.
,
2020
, “
Unified Mechanisms for Separation Control Around Airfoil Using Plasma Actuator With Burst Actuation Over Reynolds Number Range of 103–106
,”
Phys. Fluids
,
32
(
2
), p.
025102
.10.1063/1.5136072
14.
Patel
,
M. P.
,
Ng
,
T. T.
,
Vasudevan
,
S.
,
Corke
,
T. C.
,
Post
,
M. L.
,
McLaughlin
,
T. E.
, and
Suchomel
,
C. F.
,
2008
, “
Scaling Effects of an Aerodynamic Plasma Actuator
,”
J. Aircraft
,
45
(
1
), pp.
223
236
.10.2514/1.31830
15.
Mitsuo
,
K.
,
Watanabe
,
S.
,
Atobe
,
T.
,
Kato
,
H.
,
Tanaka
,
M.
, and
Uchida
,
T.
,
2013
, “
Lift Enhancement of a Pitching Airfoil in Dynamic Stall by DBD Plasma Actuators
,”
AIAA
Paper No.
2013
1119
.10.2514/6.2013-1119
16.
Wu
,
B.
,
Gao
,
C.
,
Liu
,
F.
,
Xue
,
M.
, and
Zheng
,
B.
,
2019
, “
Simulation of NACA0015 Flow Separation Control by Burst-Mode Plasma Actuation
,”
Phys. Plasmas
,
26
(
6
), p.
063507
.10.1063/1.5093669
17.
Chernyshev
,
S. L.
,
Gamirullin
,
M. D.
,
Khomich
,
V. Y.
,
Kuryachii
,
A. P.
,
Litvinov
,
V. M.
,
Manuilovich
,
S. V.
,
Moshkunov
,
S. I.
,
Rebrov
,
I. E.
,
Rusyanov
,
D. A.
, and
Yamshchikov
,
V. A.
,
2016
, “
Electrogasdynamic Laminar Flow Control on a Swept Wing
,”
Aerosp. Sci. Technol.
,
59
, pp.
155
161
.10.1016/j.ast.2016.10.019
18.
Erfani
,
R.
,
Erfani
,
T.
,
Utyuzhnikov
,
S. V.
, and
Kontis
,
K.
,
2013
, “
Optimisation of Multiple Encapsulated Electrode Plasma Actuator
,”
Aerosp. Sci. Technol.
,
26
(
1
), pp.
120
127
.10.1016/j.ast.2012.02.020
19.
Abdollahzadeh
,
M.
,
Pascoa
,
J.
, and
Oliveira
,
P.
,
2012
, “
Numerical Modeling of Boundary Layer Control Using Dielectric Barrier Discharge
,”
MEFTE IV National Conference on Fluid Mechanics, Thermodynamics and Energy, Lisbon, LNEC
, May 28–29, p. 1.https://www.researchgate.net/publication/273777271_Numerical_modeling_of_boundary_layer_control_using_dielectric_barrier_discharge
20.
Kotsonis
,
M.
, and
Ghaemi
,
S.
,
2012
, “
Performance Improvement of Plasma Actuators Using Asymmetric High Voltage Waveforms
,”
J. Phys. D
,
45
(
4
), p.
045204
.10.1088/0022-3727/45/4/045204
21.
Zheng
,
J. G.
,
Cui
,
Y. D.
,
Zhao
,
Z. J.
,
Li
,
J.
, and
Khoo
,
B. C.
,
2016
, “
Investigation of Airfoil Leading Edge Separation Control With Nanosecond Plasma Actuator
,”
Phys. Rev. Fluids
,
1
(
7
), p.
073501
.10.1103/PhysRevFluids.1.073501
22.
Chen
,
D.
,
Asada
,
K.
,
Sekimoto
,
S.
,
Fujii
,
K.
, and
Nishida
,
H.
,
2021
, “
A High-Fidelity Body-Force Modeling Approach for Plasma-Based Flow Control Simulations
,”
Phys. Fluids
,
33
(
3
), p.
037115
.10.1063/5.0040987
23.
Arunvinthan
,
S.
,
Pillai
,
S. N.
, and
Cao
,
S.
,
2020
, “
Aerodynamic Characteristics of Variously Modified Leading-Edge Protuberanced (LEP) Wind Turbine Blades Under Various Turbulent Intensities
,”
J. Wind Eng. Ind. Aerodyn.
,
202
, p.
104188
.10.1016/j.jweia.2020.104188
24.
Pendar
,
M. R.
,
Esmaeilifar
,
E.
, and
Roohi
,
E.
,
2020
, “
LES Study of Unsteady Cavitation Characteristics of a 3-D Hydrofoil With Wavy Leading Edge
,”
Int. J. Multiphase Flow
,
132
, p.
103415
.10.1016/j.ijmultiphaseflow.2020.103415
25.
Chen
,
W.
,
Qiao
,
W.
,
Duan
,
W.
, and
Wei
,
Z.
,
2021
, “
Experimental Study of Airfoil Instability Noise With Wavy Leading Edges
,”
Appl. Acoust.
,
172
, p.
107671
.10.1016/j.apacoust.2020.107671
26.
Pendar
,
M. R.
,
Páscoa
,
J.
, and
Roohi
,
E.
,
2021
, “
Cavitating Flow Structure and Noise Suppression Analysis of a Hydrofoil With Wavy Leading Edges
,”
11th International Symposium on Cavitation CAV2021
, Daejon, South Korea, May
10
13
.https://www.researchgate.net/publication/354130588_Cavitating_Flow_Structure_and_Noise_Suppression_Analysis_of_a_Hydrofoil_with_Wavy_Leading_Edges
27.
Pendar
,
M. R.
,
Páscoa
,
J.
, and
Roohi
,
E.
,
2021
, “
A Numerical Study of Unsteady Hydrodynamic Characteristics on Hydrofoils With Leading Edge Protuberances: Cavitation Investigation With LES
,”
11th International Symposium on Cavitation CAV2021
, Daejon, South Korea, May
10
13
.https://www.researchgate.net/publication/354130731_A_Numerical_Study_of_Unsteady_Hydrodynamic_Characteristics_on_hydrofoils_with_leading_edge_protuberances_Cavitation_Investigation_with_LES
28.
Miklosovic
,
D. S.
,
Murray
,
M. M.
,
Howle
,
L. E.
, and
Fish
,
F. E.
,
2004
, “
Leading-Edge Tubercles Delay Stall on Humpback Whale (Megaptera Novaeangliae) Flippers
,”
Phys. Fluids
,
16
(
5
), pp.
L39
L42
.10.1063/1.1688341
29.
Yan
,
Y.
,
Avital
,
E.
,
Williams
,
J.
, and
Cui
,
J.
,
2021
, “
Aerodynamic Performance Improvements of a Vertical Axis Wind Turbine by Leading-Edge Protuberance
,”
J. Wind Eng. Ind. Aerodyn.
,
211
, p.
104535
.10.1016/j.jweia.2021.104535
30.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.10.1063/1.168744
31.
Fish
,
F. E.
, and
Battle
,
J. M.
,
1995
, “
Hydrodynamic Design of the Humpback Whale Flipper
,”
J. Morphol.
,
225
(
1
), pp.
51
60
.10.1002/jmor.1052250105
32.
Hrynuk
,
J. T.
, and
Bohl
,
D. G.
,
2020
, “
The Effects of Leading-Edge Tubercles on Dynamic Stall
,”
J. Fluid Mech.
,
893
(
1
), p. A5.
33.
Suzen
,
Y.
,
Huang
,
G.
,
Jacob
,
J.
, and
Ashpis
,
D.
,
2005
, “
Numerical Simulations of Plasma Based Flow Control Applications
,”
AIAA
Paper No. 2005-4633.10.2514/6.2005-4633
34.
Bouchmal
,
A.
,
2011
, “
Modeling of Dielectric-Barrier Discharge Actuator: Implementation, Validation and Generalization of an Electrostatic Model
,” Master of Science thesis, Delft University of Technology, Delft, The Netherlands.
35.
Enloe
,
C. L.
,
McLaughlin
,
T. E.
,
VanDyken
,
R. D.
,
Kachner
,
K. D.
,
Jumper
,
E. J.
, and
Corke
,
T. C.
,
2004
, “
Mechanisms and Responses of a Single Dielectric Barrier Plasma Actuator: Plasma Morphology
,”
AIAA J.
,
42
(
3
), pp.
589
594
.10.2514/1.2305
36.
Enloe
,
C. L.
,
McLaughlin
,
T. E.
,
Font
,
G. I.
, and
Baughn
,
J. W.
,
2006
, “
Parameterization of Temporal Structure in the Single-Dielectric-Barrier Aerodynamic Plasma Actuator
,”
AIAA J.
,
44
(
6
), pp.
1127
1136
.10.2514/1.16297
37.
Kolahan
,
A.
,
Roohi
,
E.
, and
Pendar
,
M. R.
,
2019
, “
Wavelet Analysis and Frequency Spectrum of Cloud Cavitation Around a Sphere
,”
Ocean Eng.
,
182
, pp.
235
247
.10.1016/j.oceaneng.2019.04.070
38.
Johari
,
H.
,
Henoch
,
C.
,
Custodio
,
D.
, and
Levshin
,
A.
,
2007
, “
Effects of Leading-Edge Protuberances on Airfoil Performance
,”
AIAA J.
,
45
(
11
), pp.
2634
2642
.10.2514/1.28497
39.
Pendar
,
M.-R.
, and
Páscoa
,
J. C.
,
2020
, “
Atomization and Spray Characteristics around an ERBS Using Various Operational Models and Conditions: numerical Investigation
,”
Int. J. Heat Mass Trans.
,
161
, p.
120243
. 10.1016/j.ijheatmasstransfer.2020.120243
40.
Pendar
,
M. R.
, and
Roohi
,
E.
,
2015
, “
Detailed Investigation of Cavitation and Supercavitation around Different Geometries Using Various Turbulence and Mass Transfer Models
,”
J. Phys.: Conf. Ser.
,
656
, p.
012070
.10.1088/1742-6596/656/1/012070
41.
Amitay
,
M.
, and
Glezer
,
A.
,
2002
, “
Controlled Transients of Flow Reattachment Over Stalled Airfoils
,”
Int. J. Heat Fluid Flow
,
23
(
5
), p.
690
699
.10.1016/S0142-727X(02)00165-0
42.
Stalling
,
D.
, and
Hege
,
H. C.
,
1997
, “
LIC on Surface
,” Texture Synthesis with Line Integral Convolutions, pp.
51
64
.
You do not currently have access to this content.