Abstract

Axial flow check valve (AFCV) is widely used in piping systems because of its small flow resistance, low noise, and good sealing performance. Its working performance directly affects the safety of the pump unit and the reliability of piping system. In the event that an accident occurs in piping systems, AFCV is closed to prevent backflow. However, rapid closing of the valve can cause the disk to exert a large impact load on the seat, which can affect the service life of the valve and the process safety of the system loop. Therefore, it is necessary to study the transient closing characteristics of AFCV with damping structure. The dynamic mesh technology is used to simulate the closing process of AFCV with different damping structures. The effects of the structures of damping devices as well as the diameter of damping holes on the dynamic motion, fluid force, and damping characteristics are analyzed, respectively. The results show that the damping structure with damping holes not only has better performance in slow closing and deceleration than the damping structure with annular gap but also reduces pressure fluctuation more effectively. Moreover, the fluid damping force generated by the damping structure with damping holes during the closing process is linear with the square of the velocity. Also, the correlation between impact velocity and the diameter of damping holes is obtained. The selection strategy of machining accuracy of damping holes is proposed. This work can provide a certain reference value for the design of AFCV in practical engineering, and it can also benefit safety and maintenance of piping system.

References

1.
Olsen
,
J. E.
,
2020
, “
Crediting Check Valves as IPLs? Testing Protocol to Better Understand Check Valve Reliability
,”
Process. Saf. Prog.
,
39
(
3
), p.
e12153
.10.1002/prs.12153
2.
Lisowski
,
E.
,
Filo
,
G.
, and
Rajda
,
J.
,
2022
, “
Analysis of Energy Loss on a Tunable Check Valve Through the Numerical Simulation
,”
Energies
,
15
(
15
), p.
5740
.10.3390/en15155740
3.
He
,
X.
,
Huang
,
W.
,
Zhu
,
B.
, and
Luo
,
L.
,
2011
, “
Air Suction Characteristics of a Water Hydraulic Piston Pump With Check Valves
,”
ASME J. Fluids Eng.
,
133
(
11
), p.
114502
.10.1115/1.4005259
4.
Filo
,
G.
,
Lisowski
,
E.
, and
Rajda
,
J.
,
2021
, “
Design and Flow analysis of an Adjustable Check Valve by Means of CFD Method
,”
Energies
,
14
(
8
), p.
2237
.10.3390/en14082237
5.
Han
,
Y.
,
Zhou
,
L.
,
Bai
,
L.
,
Xue
,
P.
,
Lv
,
W.
,
Shi
,
W.
, and
Huang
,
G.
,
2022
, “
Transient Simulation and Experiment Validation on the Opening and Closing Process of a Ball Valve
,”
Nucl. Eng. Technol.
,
54
(
5
), pp.
1674
1685
.10.1016/j.net.2021.10.035
6.
Lin
,
Z.
,
Wang
,
D.
,
Tao
,
J.
,
Zhu
,
Z.
, and
Guo
,
X.
,
2022
, “
Transient Regulating Characteristics of V-Port Ball Valve in Opening and Closing Process
,”
ASME J. Fluids Eng.
,
144
(
10
), p.
101201
.10.1115/1.4054191
7.
Wang
,
X.
,
Zhang
,
J.
,
Yu
,
X.
,
Chen
,
S.
,
Zhao
,
W.
, and
Xu
,
H.
,
2019
, “
Effect of Multi-Valve Closure on Superposed Pressure in a Tree-Type Long Distance Gravitational Water Supply System
,”
J. Water Supply Res. Technol.
,
68
(
6
), pp.
420
430
.10.2166/aqua.2019.025
8.
Tran
,
P. D.
,
2015
, “
Pressure Transients Caused by Tilting-Disk Check-Valve Closure
,”
J. Hydraul. Eng.
,
141
(
3
), p.
04014081
.10.1061/(ASCE)HY.1943-7900.0000958
9.
Makaryants
,
G. M.
,
2017
, “
Fatigue Failure Mechanisms of a Pressure Relief Valve
,”
J. Loss Prevent. Proc.
,
48
, pp.
1
13
.10.1016/j.jlp.2017.03.025
10.
Sotoodeh
,
K.
,
2021
, “
Analysis and Failure Prevention of Nozzle Check Valves Used for Protection of Rotating Equipment Due to Wear and Tear in the Oil and Gas Industry
,”
J. Fail. Anal. Prev.
,
21
(
4
), pp.
1231
1239
.10.1007/s11668-021-01162-2
11.
Botros
,
K. K.
,
2011
, “
Spring Stiffness Selection Criteria for Nozzle Check Valves Employed in Compressor Stations
,”
ASME J. Eng. Gas Turb. Power
,
133
(
12
), p.
122401
.10.1115/1.4004113
12.
Kim
,
N. S.
, and
Jeong
,
Y. H.
,
2021
, “
An Investigation of Pressure Build-Up Effects Due to Check Valve's Closing Characteristics Using Dynamic Mesh Techniques of CFD
,”
Ann. Nucl. Energy
,
152
, p.
107996
.10.1016/j.anucene.2020.107996
13.
Menéndez-Blanco
,
A.
,
Oro
,
J. M. F.
, and
Meana-Fernández
,
A.
,
2019
, “
Unsteady Three-Dimensional Modeling of the Fluid–Structure Interaction in the Check Valves of Diaphragm Volumetric Pumps
,”
J. Fluid. Struct.
,
90
, pp.
432
449
.10.1016/j.jfluidstructs.2019.07.008
14.
Dong
,
J.
,
Liu
,
Y.
,
Ji
,
H.
,
Wei
,
L.
, and
Wu
,
D.
,
2022
, “
Simulation of Unsteady Flow Characteristics of the Reciprocating Pump Check Valve for High Pressure and High Flow Water Medium
,”
ASME J. Fluids Eng.
,
144
(
3
), p.
031206
.10.1115/1.4052177
15.
Lai
,
Z.
,
Li
,
Q.
,
Karney
,
B.
,
Yang
,
S.
,
Wu
,
D.
, and
Zhang
,
F.
,
2018
, “
Numerical Simulation of a Check Valve Closure Induced by Pump Shutdown
,”
J. Hydraul. Eng.
,
144
(
12
), p.
06018013
.10.1061/(ASCE)HY.1943-7900.0001543
16.
Xu
,
H.
,
Guang
,
Z. M.
, and
Qi
,
Y. Y.
,
2011
, “
Hydrodynamic Characterization and Optimization of Contra-Push Check Valve by Numerical Simulation
,”
Ann. Nucl. Energy
,
38
(
6
), pp.
1427
1437
.10.1016/j.anucene.2011.01.013
17.
Ye
,
J.
,
Zhao
,
Z.
,
Cui
,
J.
,
Hua
,
Z.
,
Peng
,
W.
, and
Jiang
,
P.
,
2022
, “
Transient Flow Behaviors of the Check Valve With Different Spool-Head Angle in High-Pressure Hydrogen Storage Systems
,”
J. Energy Storage
,
46
, p.
103761
.10.1016/j.est.2021.103761
18.
Tian
,
W.
,
Su
,
G. H.
,
Wang
,
G.
,
Qiu
,
S.
, and
Xiao
,
Z.
,
2008
, “
Numerical Simulation and Optimization on Valve-Induced Water Hammer Characteristics for Parallel Pump Feedwater System
,”
Ann. Nucl. Energy
,
35
(
12
), pp.
2280
2287
.10.1016/j.anucene.2008.08.012
19.
Luo
,
X.
,
He
,
X.
,
Cao
,
S.
, and
Ba
,
X.
,
2013
, “
Theoretical and Experimental Analysis of a One-Stage Water Hydraulic Relief Valve With a One-Way Damper
,”
ASME J. Pressure Vessel Technol.
,
135
(
6
), p.
061210
.10.1115/1.4025204
20.
Potter
,
M.
,
Bacic
,
M.
,
Ligrani
,
P.
, and
Plackett
,
M.
,
2008
, “
Instabilities of Nonreturn Valves in Low-Speed Air Systems
,”
ASME J. Fluids Eng.
,
130
(
12
), p.
121105
.10.1115/1.2969746
21.
Jian
,
J.
,
Shuai
,
Z. J.
,
Yu
,
T.
,
Wang
,
X.
,
Ren
,
K. X.
,
Dong
,
L. Y.
,
Li
,
W. Y.
, and
Jiang
,
C. X.
,
2022
, “
Research on Stability Characteristics of a Spring-Loaded Valve With Two Outlets
,”
Ann. Nucl. Energy
,
175
, p.
109250
.10.1016/j.anucene.2022.109250
22.
Filo
,
G.
,
Lisowski
,
E.
, and
Rajda
,
J.
,
2019
, “
Flow Analysis of a Switching valve With innovative Poppet Head Geometry by Means of CFD Method
,”
Flow Meas. Instrum.
,
70
, p.
101643
.10.1016/j.flowmeasinst.2019.101643
23.
Frosina
,
E.
,
Senatore
,
A.
,
Buono
,
D.
, and
Stelson
,
K. A.
,
2017
, “
A Modeling Approach to Study the Fluid-Dynamic Forces Acting on the Spool of a Flow Control Valve
,”
ASME J. Fluids Eng.
,
139
(
1
), p.
011103
.10.1115/1.4034418
24.
Scuro
,
N. L.
,
Angelo
,
E.
,
Angelo
,
G.
, and
Andrade
,
D. A.
,
2018
, “
A CFD Analysis of the Flow Dynamics of a Directly-Operated Safety Relief Valve
,”
Nucl. Eng. Des.
,
328
, pp.
321
332
.10.1016/j.nucengdes.2018.01.024
25.
Lin
,
Z.
,
Yin
,
D.
,
Tao
,
J.
,
Li
,
Y.
,
Sun
,
J.
, and
Zhu
,
Z.
,
2020
, “
Effect of Shaft Diameter on the Hydrodynamic Torque of Butterfly Valve Disk
,”
ASME J. Fluids Eng.
,
142
(
11
), p.
111202
.10.1115/1.4047795
26.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, and
Freitas
,
C. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
27.
Sibilla
,
S.
, and
Gallati
,
M.
,
2008
, “
Hydrodynamic Characterization of a Nozzle Check Valve by Numerical Simulation
,”
ASME J. Fluids Eng.
,
130
(
12
), p.
121101
.10.1115/1.3001065
28.
Chattopadhyay
,
H.
,
Kundu
,
A.
,
Saha
,
B. K.
, and
Gangopadhyay
,
T.
,
2012
, “
Analysis of Flow Structure Inside a Spool Type Pressure Regulating Valve
,”
Energy Convers. Manage.
,
53
(
1
), pp.
196
204
.10.1016/j.enconman.2011.08.021
29.
Valdes
,
J. R.
,
Rodríguez
,
J. M.
,
Monge
,
R.
,
Peña
,
J. C.
, and
Pütz
,
T.
,
2014
, “
Numerical Simulation and Experimental Validation of the Cavitating Flow Through a Ball Check Valve
,”
Energy Convers. Manage.
,
78
, pp.
776
786
.10.1016/j.enconman.2013.11.038
30.
Qian
,
J. Y.
,
Gao
,
Z. X.
,
Wang
,
J. K.
, and
Jin
,
Z. J.
,
2017
, “
Experimental and Numerical Analysis of Spring Stiffness on Flow and Valve Core Movement in Pilot Control Globe Valve
,”
Int. J. Hydrogen Energy
,
42
(
27
), pp.
17192
17201
.10.1016/j.ijhydene.2017.05.190
31.
Lai
,
Z.
,
Karney
,
B.
,
Yang
,
S.
,
Wu
,
D.
, and
Zhang
,
F.
,
2017
, “
Transient Performance of a Dual Disc Check Valve During the Opening Period
,”
Ann. Nucl. Energy
,
101
, pp.
15
22
.10.1016/j.anucene.2016.10.010
32.
Wang
,
H. M.
,
Chen
,
S.
,
Li
,
K. L.
,
Li
,
H. Q.
, and
Yang
,
Z.
,
2021
, “
Numerical Study on the Closing Characteristics of a Check Valve With Built-in Damping System
,”
J. Appl. Fluid Mech.
,
14
(
4
), pp.
1003
1014
.10.47176/jafm.14.04.32099
33.
Yang
,
Z.
,
Zhou
,
L.
,
Dou
,
H.
,
Lu
,
C.
, and
Luan
,
X.
,
2020
, “
Water Hammer Analysis When Switching of Parallel Pumps Based on Contra-Motion Check Valve
,”
Ann. Nucl. Energy
,
139
, p.
107275
.10.1016/j.anucene.2019.107275
34.
Zang
,
J.
,
Yao
,
H.
,
Zhang
,
F.
,
Liu
,
Z.
,
Meng
,
J.
,
Zhu
,
J.
,
Wang
,
Z.
, and
Qian
,
J. Y.
,
2022
, “
Dynamic Characteristics Analysis of Pilot Valves With Different Inlet Diameters Installed on the Main Steam Valve Set
,”
Case. Stud. Therm. Eng.
,
34
, p.
102004
.10.1016/j.csite.2022.102004
35.
Dokoupil
,
P.
,
Himr
,
D.
, and
Habán
,
V.
,
2019
, “
Experimental Analysis of Static and Dynamic Properties of the Check Valves
,”
EPJ Web Conf.
,
213
, p.
02013
.10.1051/epjconf/201921302013
36.
Kou
,
Y.
,
Yang
,
J.
, and
Kou
,
Z.
,
2016
, “
A Water Hammer Protection Method for Mine Drainage System Based on Velocity Adjustment of Hydraulic Control Valve
,”
Shock Vib.
,
2016
, pp.
1
13
.10.1155/2016/2346025
37.
Xu
,
T.
,
Zhang
,
L.
,
Ni
,
W.
,
Zhang
,
X.
,
Yu
,
X.
, and
Zhang
,
J.
,
2023
, “
Analysis of Anomalies in Water Hammer Experiments With Partially Open Valves
,”
ASME J. Pressure Vessel Technol.
,
145
(
1
), p.
011403
.10.1115/1.4055380
You do not currently have access to this content.