Abstract

The circular synthetic jet (SJ) for different dimensionless stroke lengths and at Reynolds number Re = 5000 was investigated in this paper. Particle image velocimetry (PIV) was used. The flow was measured at a distance of 240 mm from the orifice, and this area was divided into two fields of view (FOV). The parameter fields were created by the injunction of these two FOVs. The time-averaged velocity, turbulent kinetic energy (TKE), turbulence intensity, vorticity field, centerline, and profiles of SJ were presented and discussed. Additionally, the jet half-width of SJ was investigated. The data discontinuity at a line of the FOVs was discussed. The impact of the dimensionless stroke lengths on the parameters of SJ at Re = 5000 was discussed.

References

1.
Ingård
,
U.
, and
Labate
,
S.
,
1950
, “
Acoustic Circulation Effects and the Nonlinear Impedance of Orifices
,”
J. Acoust. Soc. Am.
,
22
(
2
), pp.
211
218
.10.1121/1.1906591
2.
Ghaffari
,
O.
,
Solovitz
,
S. A.
, and
Arik
,
M.
,
2016
, “
An Investigation Into Flow and Heat Transfer for a Slot Impinging Synthetic Jet
,”
Int. J. Heat Mass Transfer
,
100
, pp.
634
645
.10.1016/j.ijheatmasstransfer.2016.04.115
3.
Hao
,
Z.
,
Liu
,
G.
,
Ren
,
W.
,
Wang
,
Y.
, and
Bie
,
H.
,
2021
, “
Research on the Characteristics of Bluff Body Wake Field Induced by Synthetic Jet With PANS Model
,”
J. Appl. Fluid Mech.
,
14
(
4
), pp.
1053
1063
.10.47176/JAFM.14.04.31846
4.
Wang
,
P.
, and
Shen
,
C.
,
2019
, “
Characteristics of Mixing Enhancement Achieved Using a Pulsed Plasma Synthetic Jet in a Supersonic Flow
,”
J. Zhejiang Univ. Sci. A
,
20
(
9
), pp.
701
713
.10.1631/jzus.A1900130
5.
Ritchie
,
B.
,
Mujumdar
,
D.
, and
Seitzman
,
J.
,
2000
, “
Mixing in Coaxial Jets Using Synthetic Jet Actuators
,”
AIAA
Paper No. 2000-0404.10.2514/6.2000-0404
6.
Singh
,
P. K.
,
Shah
,
A. K.
,
Tripathi
,
S. N.
,
Yadav
,
H.
,
Upadhyay
,
P. K.
, and
Sahu
,
S. K.
,
2022
, “
Numerical Investigation of the Flow and Thermal Behavior of Impinging Single and Multi-Orifice Synthetic Jets With Different Waveforms
,”
Numer. Heat Transfer, Part A
,
83
(
6
), pp.
573
593
.10.1080/10407782.2022.2101808
7.
Ergur
,
E.
, and
Calisir
,
T.
,
2023
, “
Numerical Investigation of Single and Multiple Impinging Synthetic Jets on the Flow Field and Heat Transfer at Low Orifice-to-Plate Distances
,”
FME Trans.
,
51
(
3
), pp.
273
283
.10.5937/fme2303273E
8.
Ja'fari
,
M.
,
Shojae
,
F. J.
, and
Jaworski
,
A. J.
,
2023
, “
Synthetic Jet Actuators: Overview and Applications
,”
Int. J. Thermofluids
,
20
, p.
100438
.10.1016/j.ijft.2023.100438
9.
Smith
,
B. L.
, and
Swift
,
G. W.
,
2003
, “
A Comparison Between Synthetic Jets and Continuous Jets
,”
Exp. Fluids
,
34
(
4
), pp.
467
472
.10.1007/s00348-002-0577-6
10.
Béra
,
J. C.
,
Michard
,
M.
,
Grosjean
,
N.
, and
Comte-Bellot
,
G.
,
2001
, “
Flow Analysis of Two-Dimensional Pulsed Jets by Particle Image Velocimetry
,”
Exp. Fluids
,
31
(
5
), pp.
519
532
.10.1007/s003480100314
11.
De Giorgi
,
M. G. G.
,
De Luca
,
C. G. G.
,
Ficarella
,
A.
, and
Marra
,
F.
,
2015
, “
Comparison Between Synthetic Jets and Continuous Jets for Active Flow Control: Application on a NACA 0015 and a Compressor Stator Cascade
,”
Aerosp. Sci. Technol.
,
43
, pp.
256
280
.10.1016/j.ast.2015.03.004
12.
Tan
,
X.
,
Zhang
,
J.
,
Yong
,
S.
, and
Xie
,
G.
,
2015
, “
An Experimental Investigation on Comparison of Synthetic and Continuous Jets Impingement Heat Transfer
,”
Int. J. Heat Mass Transfer
,
90
, pp.
227
238
.10.1016/j.ijheatmasstransfer.2015.06.065
13.
Smith
,
B. L.
, and
Glezer
,
A.
,
1998
, “
The Formation and Evolution of Synthetic Jets
,”
Phys. Fluids
,
10
(
9
), pp.
2281
2297
.10.1063/1.869828
14.
Cater
,
J. E.
, and
Soria
,
J.
,
2002
, “
The Evolution of Round Zero-Net-Mass-Flux Jets
,”
J. Fluid Mech.
,
472
, pp.
167
200
.10.1017/S0022112002002264
15.
Violato
,
D.
, and
Scarano
,
F.
,
2011
, “
Three-Dimensional Evolution of Flow Structures in Transitional Circular and Chevron Jets
,”
Phys. Fluids
,
23
(
12
), p.
124104
.10.1063/1.3665141
16.
Crispo
,
C. M.
,
Greco
,
C. S.
,
Avallone
,
F.
, and
Cardone
,
G.
,
2017
, “
On the Flow Organization of a Chevron Synthetic Jet
,”
Exp. Therm. Fluid Sci.
,
82
, pp.
136
146
.10.1016/j.expthermflusci.2016.11.009
17.
Paolillo
,
G.
,
Greco
,
C. S.
, and
Cardone
,
G.
,
2017
, “
The Evolution of Quadruple Synthetic Jets
,”
Exp. Therm. Fluid Sci.
,
89
, pp.
259
275
.10.1016/j.expthermflusci.2017.08.010
18.
Ma
,
L. Q.
, and
Feng
,
L. H.
,
2019
, “
Vortex Formation and Evolution for Flow Over a Circular Cylinder Excited by Symmetric Synthetic Jets
,”
Exp. Therm. Fluid Sci.
,
104
, pp.
89
104
.10.1016/j.expthermflusci.2019.02.008
19.
Miró
,
A.
,
Soria
,
M.
,
Cajas
,
J. C.
,
Rodríguez
,
I.
, and
Moulinec
,
C.
,
2021
, “
Flow Topology and Heat Transfer Analysis of Slotted and Axisymmetric Synthetic Impinging Jets
,”
Int. J. Therm. Sci.
,
164
, p.
106847
.10.1016/j.ijthermalsci.2021.106847
20.
Panda
,
S.
,
Gohil
,
T. B.
, and
Arumuru
,
V.
,
2022
, “
Evolution of Flow Structure From a Coaxial Synthetic Jet
,”
Int. J. Mech. Sci.
,
231
, p.
107588
.10.1016/j.ijmecsci.2022.107588
21.
Wang
,
L.
,
Feng
,
L.
, and
Xu
,
Y.
,
2023
, “
Lagrangian Analysis on Structure Evolution and Mass Transport of Circular and Noncircular Turbulent Synthetic Jets
,”
Acta Mech. Sin.
,
39
(
3
), p.
322294
.10.1007/s10409-022-22294-x
22.
Murillo-Rincón
,
J.
, and
Duque-Daza
,
C.
,
2023
, “
Evaluation of Synthetic Jet Flow Control Technique for Modulating Turbulent Jet Noise
,”
Fluids
,
8
(
4
), p.
110
.10.3390/fluids8040110
23.
Smyk
,
E.
,
Gil
,
P.
,
Dančová
,
P.
, and
Jopek
,
M.
,
2022
, “
The PIV Measurements of Time-Averaged Parameters of the Synthetic Jet for Different Orifice Shapes
,”
Appl. Sci.
,
13
(
1
), p.
328
.10.3390/app13010328
24.
Greco
,
C. S.
,
Ianiro
,
A.
,
Astarita
,
T.
, and
Cardone
,
G.
,
2013
, “
On the Near Field of Single and Twin Circular Synthetic Air Jets
,”
Int. J. Heat Fluid Flow
,
44
, pp.
41
52
.10.1016/j.ijheatfluidflow.2013.03.018
25.
Dančová
,
P.
,
Trávníček
,
Z.
, and
Vít
,
T.
,
2013
, “
Experimental Investigation of a Synthetic Jet Array in a Laminar Channel Flow
,”
EPJ Web Conf.
,
45
, p.
01002
.10.1051/epjconf/20134501002
26.
Xu
,
Y.
, and
Wang
,
J. J.
,
2019
, “
Digital Particle Image Velocimetry Study on Parameter Influence on the Behavior of Impinging Synthetic Jets
,”
Exp. Therm. Fluid Sci.
,
100
, pp.
11
32
.10.1016/j.expthermflusci.2018.08.024
27.
Wang
,
J.
,
Shan
,
R.
,
Zhang
,
C.
, and
Feng
,
L.
,
2010
, “
Experimental Investigation of a Novel Two-Dimensional Synthetic Jet
,”
Eur. J. Mech. B/Fluids
,
29
(
5
), pp.
342
350
.10.1016/j.euromechflu.2010.05.001
28.
McGuinn
,
A.
,
Farrelly
,
R.
,
Persoons
,
T.
, and
Murray
,
D. B.
,
2013
, “
Flow Regime Characterisation of an Impinging Axisymmetric Synthetic Jet
,”
Exp. Therm. Fluid Sci.
,
47
, pp.
241
251
.10.1016/j.expthermflusci.2013.02.003
29.
Shuster
,
J. M.
, and
Smith
,
D. R.
,
2007
, “
Experimental Study of the Formation and Scaling of a Round Synthetic Jet
,”
Phys. Fluids
,
19
(
4
), p.
045109
.10.1063/1.2711481
30.
Greco
,
C. S.
,
Paolillo
,
G.
,
Ianiro
,
A.
,
Cardone
,
G.
, and
de Luca
,
L.
,
2018
, “
Effects of the Stroke Length and Nozzle-to-Plate Distance on Synthetic Jet Impingement Heat Transfer
,”
Int. J. Heat Mass Transfer
,
117
, pp.
1019
1031
.10.1016/j.ijheatmasstransfer.2017.09.118
31.
Xue
,
Z.
,
Charonko
,
J. J.
, and
Vlachos
,
P. P.
,
2014
, “
Particle Image Velocimetry Correlation Signal-to-Noise Ratio Metrics and Measurement Uncertainty Quantification
,”
Meas. Sci. Technol.
,
25
(
11
), p.
115301
.10.1088/0957-0233/25/11/115301
32.
Smyk
,
E.
,
Wilk
,
J.
, and
Markowicz
,
M.
,
2021
, “
Synthetic Jet Actuators With the Same Cross-Sectional Area Orifices-Flow and Acoustic Aspects
,”
Appl. Sci.
,
11
(
10
), p.
4600
.10.3390/app11104600
33.
Holman
,
R.
,
Utturkar
,
Y.
,
Mittal
,
R.
,
Smith
,
B. L.
, and
Cattafesta
,
L.
,
2005
, “
Formation Criterion for Synthetic Jets
,”
AIAA J.
,
43
(
10
), pp.
2110
2116
.10.2514/1.12033
34.
Lebedeva
,
I. V.
, and
Grushin
,
A. E.
,
2003
, “
Amplitude and Frequency Characteristics of Acoustic Jets
,”
Acoust. Phys.
,
49
(
3
), pp.
300
304
.10.1134/1.1574357
35.
Shuster
,
J. M.
, and
Smith
,
D. R.
,
2004
, “
A Study of the Formation and Scaling of a Synthetic Jet
,”
AIAA
Paper No. 2004-90.10.2514/6.2004-90
36.
Richardson
,
E. G.
, and
Tyler
,
E.
,
1929
, “
The Transverse Velocity Gradient Near the Mouths of Pipes in Which an Alternating or Continuous Flow of Air is Established
,”
Proc. Phys. Soc.
,
42
(
1
), pp.
1
15
.10.1088/0959-5309/42/1/302
37.
Strzelczyk
,
P.
, and
Gil
,
P.
,
2016
, “
Properties of Velocity Field in the Vicinity of Synthetic Jet Generator
,”
J. Phys. Conf. Ser.
,
760
, p.
012029
.10.1088/1742-6596/760/1/012029
38.
Tang
,
H.
, and
Zhong
,
S.
,
2006
, “
Incompressible Flow Model of Synthetic Jet Actuator
,”
AIAA J.
,
44
(
4
), pp.
908
912
.10.2514/1.15633
39.
Zaman
,
K.
,
Bridges
,
J.
, and
Huff
,
D.
,
2012
, “
Evolution From ‘Tabs' to ‘Chevron Technology’ - A Review
,”
Noise Notes
,
11
(
1
), pp.
27
48
.10.1260/1475-4738.11.1.27
40.
Wang
,
L.
,
Feng
,
L.-H.
,
Wang
,
J.-J.
, and
Li
,
T.
,
2018
, “
Parameter Influence on the Evolution of Low-Aspect-Ratio Rectangular Synthetic Jets
,”
J. Visualization
,
21
(
1
), pp.
105
115
.10.1007/s12650-017-0440-8
41.
Kral
,
L.
,
Donovan
,
J.
,
Cain
,
A.
,
Cary
,
A.
,
Kral
,
L.
,
Donovan
,
J.
,
Cain
,
A.
, and
Cary
,
A.
,
1997
, “
Numerical Simulation of Synthetic Jet Actuators
,”
AIAA
Paper No. 1824.10.2514/6.1997-1824
You do not currently have access to this content.