Abstract

The objective of the study is to thoroughly analyze the flow and heat transfer of Bingham plastic fluids through an array of uniformly gapped rough surface cylinders embedded between two confined boundaries. Radial notches are used as the surface roughness in the model, evenly distributed. Due to the formation of front vortices in uniformly gapped cylinders, a negative pressure gradient is developed. The results of the numerical simulation analysis have shown that, when compared to the averaged Nusselt number, roughness has a minimal effect on the drag coefficient and pressure drop. As the degree of roughness increases, the size of the vortices decreases, resulting in a drop in heat transfer. Moreover, the analysis of each column shows that the first column array of cylinders has a higher total drag coefficient and average Nusselt number.

References

1.
Chenlin
,
S.
,
Tongming
,
Z.
,
Hongwei
,
A.
,
Hongjun
,
Z.
, and
Liang
,
C.
,
2022
, “
Experimental Studies on Wake Structures of a Circular Cylinder With Different Surface Roughness Heights
,”
Int. J. Heat Fluid Flow
,
94
, p.
108941
.10.1016/j.ijheatfluidflow.2022.108941
2.
Yun
,
G.
,
Zhi
,
Z.
,
Li
,
Z.
, and
Zongyu
,
J.
,
2017
, “
Effect of Surface Roughness on Vortex-Induced Vibration Response of a Circular Cylinder
,”
Ships Offshore Struct.
,
13
(
1
), pp.
28
42
.10.1080/17445302.2017.1335577
3.
Kumar
,
R. A.
,
Sohn
,
C.-H.
, and
Gowda
,
B. H. L.
,
2010
, “
Passive Control of Vortex-Induced Vibrations
,”
Recent Pat. Mech. Eng.
,
1
(
1
), pp.
1
11
.10.2174/1874477X10801010001
4.
Bearman
,
P.
, and
Branković
,
M.
,
2004
, “
Experimental Studies of Passive Control of Vortex-Induced Vibration
,”
Eur. J. Mech. - B/Fluids
,
23
(
1
), pp.
9
15
.10.1016/j.euromechflu.2003.06.002
5.
Achenbach
,
E.
,
1971
, “
Influence of Surface Roughness on the Cross-Flow Around a Circular Cylinder
,”
J. Fluid Mech.
,
46
(
2
), pp.
321
335
.10.1017/S0022112071000569
6.
Achenbach
,
E.
,
1977
, “
The Effect of Surface Roughness on the Heat Transfer From a Circular Cylinder to the Cross Flow of Air
,”
Int. J. Heat Mass Transfer
,
20
(
4
), pp.
359
369
.10.1016/0017-9310(77)90157-0
7.
Zhou
,
B.
,
Wang
,
X.
,
Guo
,
W.
,
Gho
,
M. W.
, and
Tan
,
K. S.
,
2015
, “
Experimental Study on Flow Past a Circular Cylinder With Rough Surface
,”
Ocean Eng.
,
109
, pp.
7
13
.10.1016/j.oceaneng.2015.08.062
8.
Zhou
,
B.
,
Wang
,
X.
,
Guo
,
W.
,
Gho
,
M. W.
, and
Tan
,
K. S.
,
2015
, “
Control of Flow Past a Dimpled Circular Cylinder
,”
Exp. Therm. Fluid Sci.
,
69
, pp.
19
26
.10.1016/j.expthermflusci.2015.07.020
9.
Talley
,
S.
, and
Mungal
,
G.
,
2002
,
Flow Around Cactus-Shaped Cylinders
,
Annual Research Briefs
, Center for Turbulence Research, pp.
363
376
.https://www.researchgate.net/profile/Godfrey-Mungal/publication/251531980_Flow_around_cactusshaped_cylinders/links/00b49533c8c38f1e39000000/Flow-around-cactus-shaped-cylinders.pdf
10.
Rieberio
,
J. L.
,
1990
, “
Effects of Surface Roughness on the Two-Dimensional Flow Past Circular Cylinders I: Mean Forces and Pressures
,”
J. Wind Eng. Ind. Aerodyn.
,
37
(
3
), p.
299
.10.1016/0167-6105(91)90014-N
11.
Kawamura
,
T.
,
Takami
,
H.
, and
Kuwahara
,
K.
,
1984
, “
Computation of High Reynolds Number Flow Around a Circular Cylinder With Surface Roughness
,”
Fluid Dyn. Res.
,
1
(
2
), pp.
145
162
.10.2514/6.1984-340
12.
Lakehal
,
D.
,
1999
, “
Computation of Turbulent Shear Flows Over Rough-Walled Circular Cylinders
,”
J. Wind Eng. Ind. Aerodyn.
,
80
(
1–2
), pp.
47
68
.10.1016/S0167-6105(98)00122-6
13.
Bhattacharyya
,
S.
, and
Singh
,
A. K.
,
2009
, “
Augmentation of Heat Transfer From a Solid Cylinder Wrapped With a Porous Layer
,”
Int. J. Heat Mass Transfer
,
52
(
7–8
), pp.
1991
2001
.10.1016/j.ijheatmasstransfer.2008.08.041
14.
Kaur
,
J.
,
Melnik
,
R.
, and
Tiwari
,
A. K.
,
2021
, “
Forced Convection Heat Transfer Study of a Blunt-Headed Cylinder in Non-Newtonian Power-Law Fluids
,”
Int. J. Chem. Reactor Eng.
,
19
(
7
), pp.
673
688
.10.1515/ijcre-2020-0170
15.
Juncu
,
G.
,
2005
, “
Conjugate Heat/Mass Transfer From a Circular Cylinder With an Internal Heat/Mass Source in Laminar Crossflow at Low Reynolds Numbers
,”
Int. J. Heat Mass Transfer
,
48
(
2
), pp.
419
424
.10.1016/j.ijheatmasstransfer.2004.09.020
16.
Lange
,
C. F.
,
Durst
,
F.
, and
Breuer
,
M.
,
1998
, “
Momentum and Heat Transfer From Cylinders in Laminar Cross Flow 10−4 ≤ Re ≤ 200
,”
Int. J. Heat Mass Transfer
,
41
(
22
), pp.
3409
3430
.10.1016/S0017-9310(98)00077-5
17.
Sangani
,
A. S.
, and
Acrivos
,
A.
,
1982
, “
Slow Flow Past Periodic Arrays of Cylinders With Application to Heat Transfer
,”
Int. J. Multiphase Flow
,
8
(
3
), pp.
193
206
.10.1016/0301-9322(82)90029-5
18.
Bruschke
,
M. V.
, and
Advani
,
S. G.
,
1993
, “
Flow of Generalized Newtonian Fluids Across a Periodic Array of Cylinders
,”
J. Rheol.
,
37
(
3
), pp.
479
498
.10.1122/1.550455
19.
Idris
,
Z.
,
Orgéas
,
L.
,
Geindreau
,
C.
,
Bloch
,
J. F.
, and
Auriault
,
J. L.
,
2004
, “
Microstructural Effects on the Flow Law of Power-Law Fluids Through Fibrous Media
,”
Modell. Simul. Mater. Sci. Eng.
,
12
(
5
), pp.
995
1015
.10.1088/0965-0393/12/5/016
20.
Spelt
,
P. D. M. S.
,
Selerland
,
T.
,
Lawrence
,
C. J.
, and
Lee
,
P. D.
,
2005
, “
Flows of Inelastic Non-Newtonian Fluids Through Arrays of Aligned Cylinders. Part 1. Creeping Flows
,”
J. Eng. Math.
,
51
(
1
), pp.
57
80
.10.1007/s10665-004-5783-1
21.
Woods
,
J. K.
,
Spelt
,
P. D. M.
,
Lee
,
P. D.
,
Selerland
,
T.
, and
Lawrence
,
C. J.
,
2003
, “
Creeping Flows of Power-Law Fluids Through Periodic Arrays of Elliptical Cylinders
,”
J. Non-Newtonian Fluid Mech.
,
111
(
2–3
), pp.
211
228
.10.1016/S0377-0257(03)00056-9
22.
Happel
,
J.
,
1959
, “
Visous Fluid Related to Array of Cylinder
,”
Am. Inst. Chem. Eng. J.
,
5
(
2
), pp.
174
177
.10.1002/aic.690050211
23.
Yu
,
D.
,
Barron
,
R. F.
,
Ameel
,
T. A.
, and
Warrington
,
R. O.
,
1995
, “
Mixed Convection From Horizontal Tube Banks Between Two Vertical Parallel Plates
,”
Numer. Heat Transfer, Part A
,
27
(
4
), pp.
473
486
.10.1080/10407789508913713
24.
Koch
,
D. L.
, and
Ladd
,
A. J. C.
,
1997
, “
Moderate Reynolds Number Flows Through Periodic and Random Array of Cylinders
,”
J. Fluid Mech.
,
349
, pp.
31
66
.10.1017/S002211209700671X
25.
Wang
,
W.
, and
Sangani
,
A. S.
,
1997
, “
Nusselt Number for Flow Perpendicular to Arrays of Cylinders in the Limit of Small Reynolds and Large Peclet Numbers
,”
Phys. Fluids
,
9
(
6
), pp.
1529
1539
.10.1063/1.869277
26.
Gowda
,
Y. T. K.
,
Narayan
,
A. P. A.
, and
Seetharamu
,
K. N.
,
1998
, “
Finite Element Analysis of Mixed Convection Over in-Line Tube Bundles
,”
Int. J. Heat Mass Transfer
,
41
(
11
), pp.
1613
1619
.10.1016/S0017-9310(97)00244-5
27.
Lam
,
K.
,
Gong
,
W. Q.
, and
So
,
R. M. C.
,
2008
, “
Numerical Simulation of Cross-Flow Around Four Cylinders in an in-Line Square Configuration
,”
J. Fluids Struct.
,
24
(
1
), pp.
34
57
.10.1016/j.jfluidstructs.2007.06.003
28.
Chatterjee
,
D.
,
Biswas
,
G.
, and
Amiroudine
,
S.
,
2010
, “
Numerical Simulation of Flow Past Row of Square Cylinders for Various Separation Ratios
,”
Comput. Fluids
,
39
(
1
), pp.
49
59
.10.1016/j.compfluid.2009.07.002
29.
Chatterjee
,
D.
, and
Gupta
,
S. K.
,
2015
, “
Convective Transport Around Rows of Square Cylinders Arranged in a Staggered Fashion at Moderate Reynolds Number
,”
Numer. Heat Transfer, Part A
,
68
(
4
), pp.
388
410
.10.1080/10407782.2014.986004
30.
Ram
,
R. P.
,
Bharti
,
R. P.
, and
Dhiman
,
A. K.
,
2016
, “
Forced Convection Flow and Heat Transfer Across an in-Line Bank of Circular Cylinders
,”
Can. J. Chem. Eng.
,
94
(
7
), pp.
1381
1395
.10.1002/cjce.22483
31.
Maleki
,
M.
,
Martinuzzi
,
R. J.
,
Herzog
,
W.
, and
Federico
,
S.
,
2017
, “
Orthotropic Hydraulic Permeability of Arrays of Parallel Cylinders
,”
Phys Rev E
,
96
(
3
), p.
033112
.10.1103/PhysRevE.96.033112
32.
Fornarelli
,
F.
,
Lippolis
,
A.
, and
Oresta
,
P.
,
2017
, “
Buoyancy Effect on the Flow Pattern and the Thermal Performance of an Array of Circular Cylinders
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
139
(
2
), p.
022501
.10.1115/1.4034794
33.
Pravesh
,
R.
,
Dhiman
,
A.
, and
Bharti
,
R. P.
,
2019
, “
Aiding Buoyancy Mixed Convection Flow and Thermal Features Across a Periodic Array of Heated Cylinders
,”
Int. J. Heat Mass Transfer
,
130
, pp.
1141
1162
.10.1016/j.ijheatmasstransfer.2018.11.035
34.
Pravesh
,
R.
,
Dhiman
,
A.
, and
Bharti
,
R. P.
,
2022
, “
Thermal Features of Mixed Convection From an Inline Periodic Array of Circular Cylinders in non-Newtonian Power-Law Fluids
,”
Case Stud. Therm. Eng.
,
36
, p.
102175
.10.1016/j.csite.2022.102175
35.
Asif
,
M.
, and
Dhiman
,
A.
,
2021
, “
Impact of Mixed Convection on Flow Dynamics and Heat Transfer Through an Isotropic Porous Triangular Array of Periodic Heated/Cooled Cylinders
,”
Can. J. Chem. Eng.
,
99
(
S1
), pp.
S838
S862
.10.1002/cjce.24034
36.
Macosko
,
C. W.
,
1994
,
Rheology: Principles, Measurements, and Applications
,
Wiley-VCH
,
New York
.https://www.wiley-vch.de/en?option=com_eshop&view=product&isbn=9780471185758
37.
Papanastasiou
,
T. C.
,
1987
, “
Flows of Materials With Yield
,”
J. Rheol.
,
31
(
5
), pp.
385
404
.10.1122/1.549926
38.
Taylor
,
J. B.
,
Carrano
,
A. L.
, and
Kandlikar
,
S. G.
,
2006
, “
Characterization of the Effect of Surface Roughness and Texture on Fluid Flow-Past, Present, and Future
,”
Int. J. Therm. Sci.
,
45
(
10
), pp.
962
968
.10.1016/j.ijthermalsci.2006.01.004
39.
Dierich
,
F.
, and
Nikrityuk
,
P. A.
,
2013
, “
A Numerical Study of the Impact of Surface Roughness on Heat and Fluid Flow Past a Cylindrical Particle
,”
Int. J. Therm. Sci.
,
65
, pp.
92
103
.10.1016/j.ijthermalsci.2012.08.009
40.
Bharti
,
R. P.
,
Chhabra
,
R. P.
, and
Eswaran
,
V.
,
2007
, “
Effect of Blockage on Heat Transfer From a Cylinder to Power Law Liquids
,”
Chem. Eng. Sci.
,
62
(
17
), pp.
4729
4741
.10.1016/j.ces.2007.06.002
41.
Craig
,
A. E.
,
Dabiri
,
J. O.
, and
Koseff
,
J. R.
,
2016
, “
Flow Kinematics in Variable-Height Rotating Cylinder Arrays
,”
ASME J. Fluids Eng.
,
138
(
11
), p.
111203
.10.1115/1.4033676
42.
Thakur
,
P.
,
Tiwari
,
N.
, and
Chhabra
,
R. P.
,
2021
, “
Flow of Power-Law Fluids Past a Rotating Cylinder at High Reynolds Numbers
,”
ASME J. Fluids Eng.
,
143
(
10
), p.
101301
.10.1115/1.4050973
43.
Thakur
,
P.
,
Mittal
,
S.
,
Tiwari
,
N.
, and
Chhabra
,
R. P.
,
2016
, “
The Motion of a Rotating Circular Cylinder in a Stream of Bingham Plastic Fluid
,”
J. Non-Newtonian Fluid Mech.
,
235
, pp.
29
46
.10.1016/j.jnnfm.2016.06.013
44.
Thakur
,
P.
,
Tiwari
,
N.
, and
Chhabra
,
R. P.
,
2019
, “
Effect of Rotation on Laminar Forced Heat Convection From a Circular Cylinder
,”
J. Chem. Eng. Jpn.
,
52
(
9
), pp.
730
742
.10.1252/jcej.18we309
You do not currently have access to this content.