Abstract

Microfluidic-based techniques have been shown to address limitations of reconfigurable radio frequency (RF) antennas and filters in efficiency, power handling capability, cost, and frequency tuning. However, the current devices suffer from significant integration challenges associated with packaging, actuation, and control. Recent advances in reconfigurable microfluidics that utilize the motion of a selectively metalized plate (SMP) for RF tuning have demonstrated promising RF capabilities but have exposed a need for an accurate fluid actuation model. This research presents a model for the mechanical motion of a moving plate in a channel to relate the SMP size, microfluidic channel size, velocity, and inlet pressure. This model facilitates understanding of the actuation response of an RF tuning system based on a moving plate independent of the actuation method. This model is validated using a millimeter-scale plate driven by a gravitational pressure head as a quasi-static pressure source. Measurements of the prototyped device show excellent agreement with the analytical model; thus, the designer can utilize the presented model for designing and optimizing a microfluidic-based reconfigurable RF device and selecting actuation methods to meet desired outcomes. To examine model accuracy at device scale, recent papers in the microfluidics reconfigurable RF area have been studied, and excellent agreement between our proposed model and the literature data is observed.

References

1.
Song
,
Y.
,
Cheng
,
D.
, and
Zhao
,
L.
,
2018
,
Microfluidics: Fundamentals, Devices, and Applications
, 1st ed.,
Wiley
, Hoboken, NJ.
2.
Mi
,
F.
,
Hu
,
C.
,
Wang
,
Y.
,
Wang
,
L.
,
Peng
,
F.
,
Geng
,
P.
, and
Guan
,
M.
,
2022
, “
Recent Advancements in Microfluidic Chip Biosensor Detection of Foodborne Pathogenic Bacteria: A Review
,”
Anal. Bioanal. Chem.
,
414
(
9
), pp.
2883
2902
.10.1007/s00216-021-03872-w
3.
Gravesen, P., Branebjerg, J., and Jensen, O.S., 1993. “Microfluidics-A Review.”
J. Micromech. Microeng.
, 3(4), p.
168
.10.1088/0960-1317/3/4/002
4.
Wang
,
Y. N.
, and
Fu
,
L. M.
,
2018
, “
Micropumps and Biomedical Applications—A Review
,”
Microelectron. Eng.
,
195
, pp.
121
138
.10.1016/j.mee.2018.04.008
5.
Parsi
,
B.
,
Abouzarkhanifard
,
A.
, and
Zhang
,
L.
,
2023
, “
Design and Optimization of Piezoelectric Actuators for Microflap-Embedded Micropumps
,”
Adv. Mech. Eng.
,
15
(
5
), p.
168781322311589
.10.1177/16878132231158983
6.
Parsi, B., Zhang, L., and Masek, V., 2018, “Disposable Off-Chip Micro-Dispenser for Accurate Droplet Transportation.”
IEEE Sens. J.
, 19(2), pp.
575
586
.10.1109/JSEN.2018.2878484
7.
Kaviani
,
S.
,
Bahrami
,
M.
,
Esfahani
,
A. M.
, and
Parsi
,
B.
,
2014
, “
A Modeling and Vibration Analysis of a Piezoelectric Micro-Pump Diaphragm
,”
C. R. Mec.
,
342
(
12
), pp.
692
699
.10.1016/j.crme.2014.06.005
8.
Manshadi
,
M. K. D.
,
Mohammadi
,
M.
,
Zarei
,
M.
,
Saadat
,
M.
, and
Sanati-Nezhad
,
A.
,
2020
, “
Induced-Charge Electrokinetics in Microfluidics: A Review on Recent Advancements
,”
J. Micromech. Microeng.
,
30
(
11
), p.
113001
.10.1088/1361-6439/abaf34
9.
Russel
,
M. K.
,
Selvaganapathy
,
P. R.
, and
Ching
,
C. Y.
,
2017
, “
Electrical Discharge Characteristics of a Dielectric Liquid Under External Flow in a Microchannel With Planar Electrode Configuration
,”
J. Electrost.
,
87
, pp.
212
216
.10.1016/j.elstat.2017.05.002
10.
Kurmendra and Kumar
,
R.
,
2021
, “
A Review on RF Micro-Electro-Mechanical-Systems (MEMS) Switch for Radio Frequency Applications
,”
Microsyst. Technol.
,
27
(
7
), pp.
2525
2542
.10.1007/s00542-020-05025-y
11.
Dey
,
A.
,
Guldiken
,
R.
, and
Mumcu
,
G.
,
2016
, “
Microfluidically Reconfigured Wideband Frequency-Tunable Liquid-Metal Monopole Antenna
,”
IEEE Trans. Antennas Propag.
,
64
(
6
), pp.
2572
2576
.10.1109/TAP.2016.2551358
12.
Kelley
,
M.
,
Koo
,
C.
,
McQuilken
,
H.
,
Lawrence
,
B.
,
Li
,
S.
,
Han
,
A.
, and
Huff
,
G.
,
2013
, “
Frequency Reconfigurable Patch Antenna Using Liquid Metal as Switching Mechanism
,”
Electron. Lett.
,
49
(
22
), pp.
1370
1371
.10.1049/el.2013.2930
13.
Dey
,
A.
,
Guldiken
,
R.
, and
Mumcu
,
G.
,
2013
, “
Wideband Frequency Tunable Liquid Metal Monopole Antenna
,” Proceedings of the IEEE Antennas and Propagation Society International Symposium (
APSURSI
), Orlando, FL,
July 7–13
, pp.
392
393
.10.1109/APS.2013.6710857
14.
Saghati
,
A. P.
,
Batra
,
J. S.
,
Kameoka
,
J.
, and
Entesari
,
K.
,
2015
, “
Miniature and Reconfigurable CPW Folded Slot Antennas Employing Liquid-Metal Capacitive Loading
,”
IEEE Trans. Antennas Propag.
,
63
(
9
), pp.
3798
3807
.10.1109/TAP.2015.2447002
15.
Kaur
,
T.
,
Osorio
,
L.
,
Olvera-Cervantes
,
J. L.
,
Reyes-Ayona
,
R.
, and
Corona-Chavez
,
A.
,
2018
, “
Microfluidic Reconfigurable Filter Based on Ring Resonators
,”
Prog. Electromagn. Res. Lett.
,
79
, pp.
59
63
.10.2528/PIERL18080402
16.
Qaroot
,
A.
, and
Mumcu
,
G.
,
2018
, “
Microfluidically Reconfigurable Reflection Phase Shifter
,”
IEEE Microwave Wireless Compon. Lett.
,
28
(
8
), pp.
684
686
.10.1109/LMWC.2018.2847046
17.
Palomo
,
T.
, and
Mumcu
,
G.
,
2017
, “
Microfluidically Reconfigurable Microstrip Line Combline Filters With Wide Frequency Tuning Capabilities
,”
IEEE Trans. Microwave Theory Tech.
,
65
(
10
), pp.
3561
3568
.10.1109/TMTT.2017.2730181
18.
Gonzalez-Carvajal
,
E.
, and
Mumcu
,
G.
,
2020
, “
Frequency and Bandwidth Tunable mm-Wave Hairpin Bandpass Filters Using Microfluidic Reconfiguration With Integrated Actuation
,”
IEEE Trans. Microwave Theory Tech.
,
68
(
9
), pp.
3756
3768
.10.1109/TMTT.2020.3006869
19.
Park
,
E.
,
Lee
,
M.
, and
Lim
,
S.
,
2019
, “
Switchable Bandpass/Bandstop Filter Using Liquid Metal Alloy as Fluidic Switch
,”
Sensors
,
19
(
5
), p.
1081
.10.3390/s19051081
20.
Lee
,
Y.
,
2017
, “
Analytical Solutions of Channel and Duct Flows Due to General Pressure Gradients
,”
Appl. Math. Modell.
,
43
, pp.
279
286
.10.1016/j.apm.2016.10.058
21.
Fang
,
W. F.
, and
Lee
,
A. P.
,
2015
, “
LCAT Pump Optimization for an Integrated Microfluidic Droplet Generator
,”
Microfluid. Nanofluid.
,
18
(
5–6
), pp.
1265
1275
.10.1007/s10404-014-1525-5
22.
Glick
,
C. C.
,
Srimongkol
,
M. T.
,
Schwartz
,
A. J.
,
Zhuang
,
W. S.
,
Lin
,
J. C.
,
Warren
,
R. H.
,
Tekell
,
D. R.
,
Satamalee
,
P. A.
, and
Lin
,
L.
,
2016
, “
Rapid Assembly of Multilayer Microfluidic Structures Via 3D-Printed Transfer Molding and Bonding
,”
Microsyst. Nanoeng.
,
2
(
1
), pp.
1
9
.10.1038/micronano.2016.63
23.
Whitney
,
D.
,
2018
, “Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development,” Oxford, UK.
24.
González
,
E.
, and
Mumcu
,
G.
,
2019
, “
Integrated Actuation of Microfluidically Reconfigurable mm-Wave SPST Switches
,”
IEEE Microwave Wireless Compon. Lett.
,
29
(
8
), pp.
541
544
.10.1109/LMWC.2019.2925889
You do not currently have access to this content.