Abstract

An in-house compressible three-dimensional (3D) finite volume computational fluid dynamics (CFD) method, with statistical turbulence model and moving grid capabilities, is presented and applied to the suction stroke of a simplex plunger positive displacement pump. The approach utilizes a pressure-based implicit solution algorithm and a mass transfer cavitation model. Fluid-actuated valve dynamics are approximated using a fluid-structure interaction algorithm. The closed valve and early phase of valve opening are approximated by a permeable wall. A circular segment model is introduced, significantly reducing computing time. Experimental validation is performed by time-resolved pressure and flow rate measurements, as well as high-speed visualizations of the valve dynamics. A speed variation is conducted to investigate harmless advanced and erosive distinctive partial cavitation. The simulation reproduces the delay of cavity collapse, observed with increasing speed, and reveals distinctive void patterns related to the chamber pressure time progression. These void patterns are fundamental for understanding the cavitation dynamics and potential erosion risk in the system. Deviations from data remain in the flow phase subsequent to the collapse due to overestimated wave reflection at the inlet boundary in the suction pipe.

References

1.
Parker
,
D. B.
,
1994
, “
Positive Displacement Pumps - Performance and Application
,”
Proceedings of the 11th International Pump Users Symposium
, Houston, TX, Mar. 7–10, p.
137
.https://www.warrenpumps.com/resources/pdpumps.pdf
2.
Tackett
,
H. H.
,
Cripe
,
J. A.
, and
Dyson
,
G.
,
2008
, “
Positive Displacement Reciprocating Pump Fundamentals - Power and Direct Acting Types
,”
Proceedings of the 24th International Pump Users Symposium
, Houston, TX, Apr. 21–24, pp.
45
58
.https://core.ac.uk/download/pdf/87266376.pdf
3.
Opitz
,
K.
, and
Schlücker
,
E.
,
2010
, “
Detection of Cavitation Phenomena in Reciprocating Pumps Using a High-Speed Camera
,”
Chem. Eng. Technol.
,
33
(
10
), pp.
1610
1614
.10.1002/ceat.201000204
4.
Opitz
,
K.
,
Schade
,
O.
, and
Schlücker
,
E.
,
2011
, “
Cavitation in Reciprocating Positive Displacement Pumps
,”
Proceedings of the 27th International Pump Users Symposium
, Houston, TX, Sept. 12–15, pp.
27
33
.
5.
Opitz
,
K. M.
,
Engel
,
S. R.
,
Koegler
,
A. F.
,
Leipertz
,
A.
, and
Schlücker
,
E.
,
2012
, “
High-Speed Particle Image Velocimetry Measurements of Turbulent Pipe Flows for Verification of a Fluid-Dynamic Cavitation Model
,”
Chem. Eng. Technol.
,
35
(
11
), pp.
2035
2044
.10.1002/ceat.201200209
6.
Johnston
,
D. N.
,
1991
, “
Numerical Modelling of Reciprocating Pumps With Self-Acting Valves
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
205
(
2
), pp.
87
96
.10.1243/PIME_PROC_1991_205_318_02
7.
Shu
,
J.-J.
,
Burrows
,
C. R.
, and
Edge
,
K. A.
,
1997
, “
Pressure Pulsations in Reciprocating Pump Piping Systems Part 1: Modelling
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
211
(
3
), pp.
229
235
.10.1243/0959651971539768
8.
Edge
,
K. A.
,
Boston
,
O. P.
,
Xiao
,
S.
,
Longvill
,
M. J.
, and
Burrows
,
C. R.
,
1997
, “
Pressure Pulsations in Reciprocating Pump Piping Systems Part 2: Experimental Investigations and Model Validation
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
211
(
3
), pp.
239
250
.10.1243/0959651971539777
9.
Fritsch
,
H.
, and
Strinzelberger
,
M.
,
1998
, “
Modellierung Des Kavitationsgeschehens in Oszillierenden Verdrängerpumpen
,”
Industriepumpen Kompressoren
,
2
(
94
).
10.
Schlücker
,
E.
,
Fritsch
,
H.
,
Stritzelberger
,
M.
, and
Schwarz
,
J.
,
1997
, “
A New Evaluation Method for Estimating Npsh-Values of Reciprocating Positive Displacement Pumps
,”
Proceedings of the ASME Fluid Division Summer Meeting
, Vancouver, BC, Canada, June
22
26
.
11.
Blendinger
,
S.
,
Schlücker
,
E.
, and
Schade
,
O.
,
2008
, “
Computational Fluid Dynamics Simulation of Reciprocating Pumps With Respect to the Fluid Driven Valve Motion
,”
Proceedings of the Pump Users International Forum
, Düsseldorf, Germany, Oct.
28
29
.
12.
Anciger
,
D.
,
Schilling
,
R.
,
Opitz
,
K.
, and
Schlücker
,
E.
,
2009
, “
Numerical Prediction of the Piston Driven Valve Motion in Positive Displacement Pumps
,”
Proceedings of the 14th International Conference on Fluid Flow Technologies
, Budapest, Hungary, Sept.
9
12
.
13.
Song
,
X. G.
,
Wang
,
L.
, and
Park
,
Y. C.
,
2010
, “
Transient Analysis of a Spring-Loaded Pressure Safety Valve Using Computational Fluid Dynamics (CFD)
,”
ASME J. Pressure Vessel Technol.
,
132
(
5
), p.
054501
.10.1115/1.4001428
14.
Beune
,
A.
,
Kuerten
,
J.
, and
Schmidt
,
J.
,
2011
, “
Numerical Calculation and Experimental Validation of Safety Valve Flows at Pressures Up to 600 Bar
,”
Aiche J.
,
57
(
12
), pp.
3285
3298
.10.1002/aic.12534
15.
Beune
,
A.
,
Kuerten
,
J.
, and
van Heumen
,
M.
,
2012
, “
CFD Analysis With Fluid-Structure Interaction of Opening High-Pressure Safety Valves
,”
Comput. Fluids
,
64
, pp.
108
116
.10.1016/j.compfluid.2012.05.010
16.
Wang
,
G.
,
Zhong
,
L.
,
He
,
X.
,
Lei
,
Z.
,
Hu
,
G.
,
Li
,
R.
, and
Wang
,
Y.
,
2015
, “
Dynamic Behavior of Reciprocating Plunger Pump Discharge Valve Based on Fluid Structure Interaction and Experimental Analysis
,”
PLoS One
,
10
(
10
), p.
e0140396
.10.1371/journal.pone.0140396
17.
Deimel
,
C.
,
Mottyll
,
S.
,
Skoda
,
R.
,
Kiermeir
,
J.
,
Guentner
,
M.
, and
Schilling
,
R.
,
2014
, “
Numerical 3D Simulation of the Fluid-Actuated Valve Motion in a Positive Displacement Pump With Resolution of the Cavitation-Induced Shock Dynamics
,”
Proceedings of the 8th International Conference on Computational Fluid Dynamics
, Chengdu, China, July 14–18, pp.
1
19
.10.13140/2.1.3443.2326
18.
Kiermeir
,
J.
,
Skoda
,
R.
, and
Schilling
,
R.
,
2016
, “
A Numerical Study of the Cavitating Flow in a Positive Displacement Pump
,”
Proceedings of the 3rd International Rotating Equipment Conference – Pump Users International Forum
, Düsseldorf, Germany, Sept.
14
15
.
19.
Zhu
,
G.
, and
Dong
,
S.
,
2020
, “
Analysis on the Performance Improvement of Reciprocating Pump With Variable Stiffness Valve Using CFD
,”
J. Appl. Fluid Mech.
,
13
(
2
), pp.
387
400
.10.29252/jafm.13.02.30478
20.
Iannetti
,
A.
,
Stickland
,
M. T.
, and
Dempster
,
W. M.
,
2014
, “
A Computational Fluid Dynamics Model to Evaluate the Inlet Stroke Performance of a Positive Displacement Reciprocating Plunger Pump
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
228
(
5
), pp.
574
584
.10.1177/0957650914530295
21.
Iannetti
,
A.
,
Stickland
,
M. T.
, and
Dempster
,
W. M.
,
2015
, “
A CFD Study on the Mechanisms Which Cause Cavitation in Positive Displacement Reciprocating Pumps
,”
J. Hydraul. Eng.
,
1
(
3
), pp.
47
59
.10.17265/2332-8215/2015.01.005
22.
Iannetti
,
A.
,
Stickland
,
M. T.
, and
Dempster
,
W. M.
,
2016
, “
A CFD and Experimental Study on Cavitation in Positive Displacement Pumps: Benefits and Drawbacks of the ‘full’ Cavitation Model
,”
Eng. Appl. Comput. Fluid Mech.
,
10
(
1
), pp.
57
71
.10.1080/19942060.2015.1110535
23.
Schnerr
,
G. H.
, and
Sauer
,
J.
,
2001
, “
Physical and Numerical Modeling of Unsteady Cavitation Dynamics
,”
Proceedings of the 4th International Conference on Multiphase Flow
, New Orleans, LA, May 27–June 1, pp.
1
12
.https://www.researchgate.net/publication/296196752_Physical_and_Numerical_Modeling_of_Unsteady_Cavitation_Dynamics
24.
Iannetti
,
A.
,
Stickland
,
M. T.
, and
Dempster
,
W. M.
,
2014
, “
A CFD Study on Design Parameters Acting in Cavitation of Positive Displacement Pump
,”
Proceedings of the 12th Fluid Machinery Congress
,
25.
Iannetti
,
A.
,
Stickland
,
M. T.
, and
Dempster
,
W. M.
,
2015
, “
An Advanced CFD Model to Study the Effect of Non-Condensable Gas on Cavitation in Positive Displacement Pumps
,”
Central Eur. J. Eng.
,
5
, pp.
323
331
.10.1515/eng-2015-0027
26.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.10.1115/1.1486223
27.
Ma
,
Y.
,
Ni
,
Y.
,
Zhang
,
H.
,
Zhou
,
S.
, and
Deng
,
H.
,
2018
, “
Influence of Valve's Lag Characteristic on Pressure Pulsation and Performance of Reciprocating Multiphase Pump
,”
J. Pet. Sci. Eng.
,
164
, pp.
584
594
.10.1016/j.petrol.2018.02.007
28.
Li
,
W.
, and
Yu
,
Z.
,
2021
, “
Cavitating Flows of Organic Fluid With Thermodynamic Effect in a Diaphragm Pump for Organic Rankine Cycle Systems
,”
Energy
,
237
, p.
121495
.10.1016/j.energy.2021.121495
29.
Sauer
,
J.
,
2000
, “
Instationär Kavitierende Strömungen - Ein Neues Modell, Basierend Auf Front Capturing (VoF) Und Blasendynamik
,”
Ph.D thesis
,
Universität Karlsruhe (TH
), Karlsruhe, Germany.10.5445/IR/3122000
30.
Dymond
,
J. H.
, and
Malhotra
,
R.
,
1988
, “
The Tait Equation: 100 Years on
,”
Int. J. Thermophys.
,
9
(
6
), pp.
941
951
.10.1007/BF01133262
31.
Chen
,
C.-T. A.
, and
Millero
,
F. J.
,
1986
, “
Thermodynamic Properties for Natural Waters Covering Only the Limnological range1
,”
Limnol. Oceanogr.
,
31
(
3
), pp.
657
662
.10.4319/lo.1986.31.3.0657
32.
Kubota
,
A.
,
Kato
,
H.
, and
Yamaguchi
,
H.
,
1992
, “
A New Modelling of Cavitating Flows: A Numerical Study of Unsteady Cavitation on a Hydrofoil Section
,”
J. Fluid Mech.
,
240
(
1
), pp.
59
96
.10.1017/S002211209200003X
33.
Brennen
,
C. E.
,
2013
,
Cavitation and Bubble Dynamics
,
Cambridge University Press
, Cambridge, UK.
34.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
35.
Knopp
,
T.
,
2006
, “
Model-Consistent Universal Wall-Functions for RANS Turbulence Modelling
,”
Proceedings of the BAIL International Conference on Boundary and Interior Layers
, Göttingen, Germany, July 17–21, pp.
1
8
.https://num.math.uni-goettingen.de/bail/documents/proceedings/knopp.pdf
36.
Goncalves
,
E.
,
2011
, “
Numerical Study of Unsteady Turbulent Cavitating Flows
,”
Eur. J. Mech.-B/Fluids
,
30
(
1
), pp.
26
40
.10.1016/j.euromechflu.2010.08.002
37.
Coutier-Delgosha
,
O.
,
Fortes Patella
,
R.
, and
Reboud
,
J.-L.
,
2003
, “
Evaluation of the Turbulence Model Influence on the Numerical Simulations of Unsteady Cavitation
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
38
45
.10.1115/1.1524584
38.
Decaix
,
J.
, and
Goncalvès
,
E.
,
2013
, “
Compressible Effects Modeling in Turbulent Cavitating Flows
,”
Eur. J. Mech.-B/Fluids
,
39
, pp.
11
31
.10.1016/j.euromechflu.2012.12.001
39.
Sarkar
,
S.
,
Erlebacher
,
G.
,
Hussaini
,
M. Y.
, and
Kreiss
,
H. O.
,
1991
, “
The Analysis and Modelling of Dilatational Terms in Compressible Turbulence
,”
J. Fluid Mech.
,
227
, pp.
473
493
.10.1017/S0022112091000204
40.
Wilcox
,
D. C.
,
1992
, “
Dilatation-Dissipation Corrections for Advanced Turbulence Models
,”
AIAA J.
,
30
(
11
), pp.
2639
2646
.10.2514/3.11279
41.
Wallis
,
G. B.
,
1969
,
One-Dimensional Two-Phase Flow
,
McGraw-Hill
, New York.
42.
Kiermeir
,
J.
,
2015
, “
Numerische Simulation Einphasiger Sowie Kavitierender Strömungen in Oszillierenden Verdrängerpumpen
,” Ph.D thesis,
Technische Universität München
, München, Germany.
43.
Linkamp
,
A.
,
Deimel
,
C.
,
Brümmer
,
A.
, and
Skoda
,
R.
,
2016
, “
Non-Reflecting Coupling Method for One-Dimensional Finite Difference/Finite Volume Schemes Based on Spectral Error Analysis
,”
Comput. Fluids
,
140
, pp.
334
346
.10.1016/j.compfluid.2016.10.011
44.
Linkamp
,
A.
,
Deimel
,
C.
,
Brümmer
,
A.
, and
Skoda
,
R.
,
2016
, “
First Application of a Coupled 3D-1D-1D Finite Volume – Finite Difference Method for the Numerical Simulation of Fluid Energy Machinery and Its Adjacent Piping System
,”
Proceedings of the 3rd International Rotating Equipment Conference – Pump Users International Forum
, Düsseldorf, Germany, Sept. 14–15, pp.
1
11
.https://www.researchgate.net/publication/306066171_First_application_of_a_coupled_3D-1D-1D_Finite_Volume_ _Finite_Difference_method_for_the_numerical_simulation_of_fluid_energy_machinery_and_its_adjacent_piping_system
45.
Munsch
,
P.
,
Lehr
,
C.
,
Brümmer
,
A.
, and
Skoda
,
R.
,
2023
, “
A Compressible, Coupled Three-Dimensional/One-Dimensional Flow Solution Method for the Seamless Simulation of Centrifugal Pumps and Their Piping
,”
ASME J. Fluids Eng.
,
145
(
9
), p.
091203
.10.1115/1.4062322
46.
Patankar
,
S.
, and
Spalding
,
D.
,
1972
, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transfer
,
15
(
10
), pp.
1787
1806
.10.1016/0017-9310(72)90054-3
47.
Lilek
,
Ž.
,
Muzaferija
,
S.
,
Perić
,
M.
, and
Seidl
,
V.
,
1997
, “
An Implicit Finite Volume Method Using Nonmatching Blocks of Structured Grid
,”
Numer. Heat Transfer, Part B: Fundam.
,
32
(
4
), pp.
385
401
.10.1080/10407799708915015
48.
van Leer
,
B.
,
1974
, “
Towards the Ultimate Conservative Difference Scheme. II. monotonicity and Conservation Combined in a Second-Order Scheme
,”
J. Comput. Phys.
,
14
(
4
), pp.
361
370
.10.1016/0021-9991(74)90019-9
49.
Demirdžić
,
I.
, and
Perić
,
M.
,
1988
, “
Space Conservation Law in Finite Volume Calculations of Fluid Flow
,”
Int. J. Numer. Methods Fluids
,
8
(
9
), pp.
1037
1050
.10.1002/fld.1650080906
50.
Gabriel
,
E.
,
Fagg
,
G. E.
,
Bosilca
,
G.
,
Angskun
,
T.
,
Dongarra
,
J. J.
,
Squyres
,
J. M.
,
Sahay
,
V.
,
Kambadur
,
P.
,
Barrett
,
B.
,
et al
.,
2004
, “
Open MPI: Goals, Concept, and Design of a Next Generation MPI Implementation
,”
Proceedings of 11th European PVM/MPI Users' Group Meeting
, Budapest, Hungary, Sept. 19–22, pp.
97
104
.10.1007/978-3-540-30218-6_19
51.
Ueda
,
J-I.
, and
Sadamoto
,
Y.
,
1997
, “
A Measurement of the Effective Mass of Coil Springs
,”
J. Phys. Soc. Jpn.
,
66
(
2
), pp.
367
368
.10.1143/JPSJ.66.367
52.
Newmark
,
N. M.
,
1959
, “
A Method of Computation for Structural Dynamics
,”
J. Eng. Mech. Div.
,
85
(
3
), pp.
67
94
.10.1061/JMCEA3.0000098
You do not currently have access to this content.