Abstract

The primary aim of this study is to analyze the unsteady characteristics of the interaction between a reflected shock wave and a laminar boundary layer in an end-wall shock tube. Our direct numerical simulations at shock Mach numbers of Ms = 1.9, 2.5, and 3.5 using a fifth-order WENO scheme and three-step Runge–Kutta time integration method revealed inhomogeneity and anisotropy in the shock bifurcation. Surprisingly, the upper and lower bifurcated structures maintain a notably asymmetric flow during the forward propagation of the reflected shock bifurcation. The inverse flow in the bifurcation resembles a crooked earthworm structure, exhibiting high-frequency oscillations indicative of instability. However, at higher shock intensities, the earthworm transforms into a stable strip-like configuration, facilitating the entrapment of inverse flow and leading to rapid bifurcation height growth and early convergence. Additionally, isolated islands with high density, temperature, and pressure emerge in the transitional region behind the bifurcated shocks, due to variations in wave propagation speed.

References

1.
Bernardini
,
M.
,
Della Posta
,
G.
,
Salvadore
,
F.
, and
Martelli
,
E.
,
2023
, “
Unsteadiness Characterisation of Shock Wave/Turbulent Boundary-Layer Interaction at Moderate Reynolds Number
,”
J. Fluid Mech.
,
954
, p.
A43
.10.1017/jfm.2022.1038
2.
Gaitonde
,
D. V.
, and
Adler
,
M. C.
,
2023
, “
Dynamics of Three-Dimensional Shock-Wave/Boundary-Layer Interactions
,”
Annu. Rev. Fluid Mech.
,
55
(
1
), pp.
291
321
.10.1146/annurev-fluid-120720-022542
3.
Zuo
,
F. Y.
, and
Pirozzoli
,
S.
,
2024
, “
Recent Progress in Conical Shock Wave/Boundary Layer Interaction With Spanwise Pressure Gradient
,”
Propul. Power Res.
,
13
(
3
), pp.
295
318
.10.1016/j.jppr.2024.08.003
4.
Sabnis
,
K.
, and
Babinsky
,
H.
,
2023
, “
A Review of Three-Dimensional Shock Wave–Boundary-Layer Interactions
,”
Prog. Aerosp. Sci.
,
143
, p.
100953
.10.1016/j.paerosci.2023.100953
5.
Laguarda
,
L.
,
Hickel
,
S.
,
Schrijer
,
F. F. J.
, and
Van Oudheusden
,
B. W.
,
2024
, “
Reynolds Number Effects in Shock-Wave/Turbulent Boundary-Layer Interactions
,”
J. Fluid Mech.
,
989
, p.
A20
.10.1017/jfm.2024.361
6.
Threadgill
,
J. A.
,
Little
,
J. C.
, and
Wernz
,
S. H.
,
2021
, “
Transitional Shock Boundary Layer Interactions on a Compression Ramp at Mach 4
,”
AIAA J.
,
59
(
12
), pp.
4824
4841
.10.2514/1.J059981
7.
Ceci
,
A.
,
Palumbo
,
A.
,
Larsson
,
J.
, and
Pirozzoli
,
S.
,
2024
, “
Low-Frequency Unsteadiness in Hypersonic Swept Shock Wave-Boundary Layer Interactions
,”
Phys. Rev. Fluids
,
9
(
5
), p.
054603
.10.1103/PhysRevFluids.9.054603
8.
Thangadurai
,
M.
,
Kundu
,
A.
, and
Biswas
,
G.
,
2022
, “
Analysis of Shock Wave-Boundary Layer Interaction in a Shock Tube Using Higher Order Scheme
,”
Comput. Fluids
,
236
, p.
105305
.10.1016/j.compfluid.2022.105305
9.
Kundu
,
A.
,
Thangadurai
,
M.
, and
Biswas
,
G.
,
2021
, “
Investigation on Shear Layer Instabilities and Generation of Vortices During Shock Wave and Boundary Layer Interaction
,”
Comput. Fluids
,
224
, p.
104966
.10.1016/j.compfluid.2021.104966
10.
Davies
,
L.
, and
Wilson
,
J. L.
,
1969
, “
Influence of Reflected Shock and Boundary‐Layer Interaction on Shock‐Tube Flows
,”
Phys. Fluids
,
12
(
5
), pp.
I-37
I-43
.10.1063/1.1692625
11.
Mark
,
H.
,
1958
, “
The Interaction of a Reflected Shock Wave With the Boundary Layer in a Shock Tube
,” No. NACA-TM-1418.
12.
Wilson
,
G.
,
Sharma
,
S.
, and
Gillespie
,
W.
,
1993
, “
Time-Dependent Simulation of Reflected-Shock/Boundary Layer Interaction
,”
AIAA
Paper No. 1993-480.10.2514/6.1993-480
13.
Petersen
,
E. L.
, and
Hanson
,
R. K.
,
2001
, “
Nonideal Effects Behind Reflected Shock Waves in a High-Pressure Shock Tube
,”
Shock Waves
,
10
(
6
), pp.
405
420
.10.1007/PL00004051
14.
Petersen
,
E. L.
, and
Hanson
,
R. K.
,
2006
, “
Measurement of Reflected-Shock Bifurcation Over a Wide Range of Gas Composition and Pressure
,”
Shock Waves
,
15
(
5
), pp.
333
340
.10.1007/s00193-006-0032-3
15.
Zhao
,
W.
,
Fan
,
C.
,
Deiterding
,
R.
,
Li
,
X.
,
Liang
,
J.
, and
Yang
,
X.
,
2024
, “
A New Rapid Deflagration-to-Detonation Transition in a Short Smooth Tube
,”
Phys. Fluids
,
36
(
3
), p.
036104
.10.1063/5.0191500
16.
Lai
,
S.
,
Tang
,
S.
,
Xu
,
C.
,
Sekularac
,
N.
, and
Fang
,
X.
,
2023
, “
Computational Diagnostics for Flame Acceleration and Transition to Detonation in a Hydrogen/Air Mixture
,”
Combust. Flame
,
258
, p.
113054
.10.1016/j.combustflame.2023.113054
17.
Gamezo
,
V. N.
,
Oran
,
E. S.
, and
Khokhlov
,
A. M.
,
2005
, “
Three-Dimensional Reactive Shock Bifurcations
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
1841
1847
.10.1016/j.proci.2004.08.259
18.
Yang
,
H.
, and
Radulescu
,
M. I.
,
2021
, “
Enhanced DDT Mechanism From Shock-Flame Interactions in Thin Channels
,”
Proc. Combust. Inst.
,
38
(
3
), pp.
3481
3495
.10.1016/j.proci.2020.07.140
19.
Zhu
,
Y.
, and
Gao
,
L.
,
2021
, “
Effect of Reactive Gas Mixture Distributions on the Flame Evolution in Shock Accelerated Flow
,”
Acta Astronaut.
,
179
, pp.
484
494
.10.1016/j.actaastro.2020.11.026
20.
Hargis
,
J. W.
, and
Petersen
,
E. L.
,
2017
, “
Shock-Tube Boundary-Layer Effects on Reflected-Shock Conditions With and Without CO2
,”
AIAA J.
,
55
(
3
), pp.
902
912
.10.2514/1.J055253
21.
Hargis
,
J. W.
, and
Petersen
,
E. L.
,
2015
, “
Methane Ignition in a Shock Tube With High Levels of CO2 Dilution: Consideration of the Reflected-Shock Bifurcation
,”
Energy Fuels
,
29
(
11
), pp.
7712
7726
.10.1021/acs.energyfuels.5b01760
22.
Yamashita
,
H.
,
Kasahara
,
J.
,
Sugiyama
,
Y.
, and
Matsuo
,
A.
,
2012
, “
Visualization Study of Ignition Modes Behind Bifurcated-Reflected Shock Waves
,”
Combust. Flame
,
159
(
9
), pp.
2954
2966
.10.1016/j.combustflame.2012.05.009
23.
Grogan
,
K. P.
, and
Ihme
,
M.
,
2017
, “
Regimes Describing Shock Boundary Layer Interaction and Ignition in Shock Tubes
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
2927
2935
.10.1016/j.proci.2016.06.078
24.
Zhu
,
K.
,
Jiang
,
L. X.
,
Liu
,
W. D.
,
Sun
,
M. B.
,
Wang
,
Q. C.
, and
Hu
,
Z. W.
,
2021
, “
Wall Temperature Effects on Shock Wave/Turbulent Boundary Layer Interaction Via Direct Numerical Simulation
,”
Acta Astronaut.
,
178
, pp.
499
510
.10.1016/j.actaastro.2020.08.042
25.
Fang
,
J.
,
Zheltovodov
,
A. A.
,
Yao
,
Y.
,
Moulinec
,
C.
, and
Emerson
,
D. R.
,
2020
, “
On the Turbulence Amplification in Shock-Wave/Turbulent Boundary Layer Interaction
,”
J. Fluid Mech.
,
897
, p.
A32
.10.1017/jfm.2020.350
26.
Huang
,
W.
,
Wu
,
H.
,
Yang
,
Y. G.
,
Yan
,
L.
, and
Li
,
S. B.
,
2020
, “
Recent Advances in the Shock Wave/Boundary Layer Interaction and Its Control in Internal and External Flows
,”
Acta Astronaut.
,
174
, pp.
103
122
.10.1016/j.actaastro.2020.05.001
27.
Tong
,
F.
,
Duan
,
J.
, and
Li
,
X.
,
2021
, “
Shock Wave and Turbulent Boundary Layer Interaction in a Double Compression Ramp
,”
Comput. Fluids
,
229
, p.
105087
.10.1016/j.compfluid.2021.105087
28.
Weber
,
Y. S.
,
Oran
,
E. S.
,
Boris
,
J. P.
, and
Anderson
,
J. D.
, Jr
,
1995
, “
The Numerical Simulation of Shock Bifurcation Near the End Wall of a Shock Tube
,”
Phys. Fluids
,
7
(
10
), pp.
2475
2488
.10.1063/1.868691
29.
Arun
,
K. R.
, and
Kim
,
H. D.
,
2013
, “
Computational Study of the Unsteady Flow Characteristics of a Micro Shock Tube
,”
J. Mech. Sci. Technol.
,
27
(
2
), pp.
451
459
.10.1007/s12206-012-1259-9
30.
Bulovich
,
S. V.
,
Vikolaĭnen
,
V. É.
,
Zverintsev
,
S. V.
, and
Petrov
,
R. L.
,
2007
, “
Numerical Simulation of the Interaction Between Reflected Shock Wave and Near-Wall Boundary Layer
,”
Tech. Phys. Lett.
,
33
(
2
), pp.
173
175
.10.1134/S1063785007020241
31.
Amir
,
A. F.
,
Yusoff
,
M. Z.
,
Yusaf
,
T.
, and
Ahmed
,
D. I.
,
2012
, “
Numerical Investigation of Flow Instability in Shock Tube Due to Shock Wave‐Contact Surface Interactions
,”
Int. J. Numer. Methods Heat Fluid Flow
,
22
(
3
), pp.
377
398
.10.1108/09615531211208079
32.
Penyazkov
,
O.
, and
Skilandz
,
A.
,
2018
, “
Bifurcation Parameters of a Reflected Shock Wave in Cylindrical Channels of Different Roughnesses
,”
Shock Waves
,
28
(
2
), pp.
299
309
.10.1007/s00193-017-0739-3
33.
Daru
,
V.
, and
Tenaud
,
C.
,
2009
, “
Numerical Simulation of the Viscous Shock Tube Problem by Using a High Resolution Monotonicity-Preserving Scheme
,”
Comput. Fluids
,
38
(
3
), pp.
664
676
.10.1016/j.compfluid.2008.06.008
34.
Steger
,
J. L.
, and
Warming
,
R.
,
1981
, “
Flux Vector Splitting of the Inviscid Gasdynamic Equations With Application to Finite Difference Methods
,”
J. Comput. Phys.
,
40
(
2
), pp.
263
293
.10.1016/0021-9991(81)90210-2
35.
Jiang
,
G. S.
, and
Shu
,
C. W.
,
1996
, “
Efficient Implementation of Weighted ENO Schemes
,”
J. Comput. Phys.
,
126
(
1
), pp.
202
228
.10.1006/jcph.1996.0130
36.
Matsuo
,
K.
,
Kawagoe
,
S.
, and
Kage
,
K.
,
1974
, “
The Interaction of a Reflected Shock Wave With the Boundary Layer in a Shock Tube
,”
Bull. JSME
,
17
(
110
), pp.
1039
1046
.10.1299/jsme1958.17.1039
37.
Mirels
,
H.
,
1955
, “
Laminar Boundary Layer Behind Shock Advancing Into Stationary Fluid
,” No. NACA-TN-3401.
38.
Zhang
,
Y.
,
Ma
,
Z.
,
Zou
,
J.
, and
Zheng
,
Y.
,
2019
, “
Shock Bifurcation Phenomenon in the Reflected Shock/Boundary Layer Interaction
,” The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (
APISAT 2018
), 9th ed., Chengdu City, China,
Oct. 16–18
, pp.
423
430
.10.1007/978-981-13-3305-7_34
39.
Zhang
,
Y.
,
Zou
,
J.
,
Xie
,
J.
,
Li
,
X.
,
Ma
,
Z.
, and
Zheng
,
Y.
,
2018
, “
Asymmetric Characteristics of the Shock Bifurcation in the Reflected Shock/Boundary Layer Interaction
,”
Int. J. Numer. Methods Heat Fluid Flow
,
28
(
10
), pp.
2357
2377
.10.1108/HFF-09-2017-0376
You do not currently have access to this content.