Abstract

This study presents a detailed comparative analysis between experimental leakage flow rates and numerical predictions for carbon brush seals with long bristles, utilizing a porous medium model approach. A series of tests were carried out on a static rig (without rotor rotation). The experimental setup allows tests under various interference conditions, revealing significant insights into the flow behavior through the brush seal. A numerical model based on the Darcy–Forchheimer equation is developed to interpret the complex flow dynamics within the brush seal, accounting for viscous, compressible, and inertial effects. The study evaluates the impact of brush deformation and porosity on flow resistance, leveraging experimental data to refine the numerical model parameters. This investigation not only deepens the understanding of brush seal flow physics but also improves the predictive accuracy of the numerical model in simulating operational conditions.

References

1.
Ferguson
,
J.
,
1988
, “
Brushes as High Performance Gas Turbine Seals
,”
ASME
Paper No. 88-GT-182.10.1115/88-GT-182
2.
Bowen
,
J. P.
,
Bird
,
J. J.
,
Cross
,
H.
,
Jenkins
,
M. R.
,
Bowsher
,
A. A.
,
Crudgington
,
P. F.
,
Sangan
,
C. M.
, and
Scobie
,
J. A.
,
2024
, “
Fluid Dynamic Behaviour of Conventional and Pressure Relieving Brush Seals
,”
ASME J. Eng. Gas Turbines Power
,
146
(
6
), p.
061001
.10.1115/1.4063775
3.
Flouros
,
M.
,
Stadlbauer
,
M.
,
Cottier
,
F.
,
Proestler
,
S.
, and
Beichl
,
S.
,
2013
, “
Transient Temperature Measurements in the Contact Zone Between Brush Seals of Kevlar and Metallic Type for Bearing Chamber Sealing Using a Pyrometric Technique
,”
ASME J. Eng. Gas Turbines Power
,
135
(
8
), p.
081603
.10.1115/1.4024258
4.
Hendricks
,
R.
,
Schlumberger
,
S.
,
Braun
,
M.
,
Choy
,
F.
, and
Mullen
,
R.
,
1991
, “
A Bulk Flow Model of a Brush Seal System
,”
ASME
Paper No. 91-GT-325.10.1115/91-GT-325
5.
Hendricks
,
R.
,
Braun
,
M.
,
Canacci
,
V.
, and
Mullen
,
R.
,
1991
, “
Paper IX (i) Brush Seals in Vehicle Tribology
,”
Tribol. Ser.
,
18
, pp.
231
242
.10.1016/S0167-8922(08)70138-X
6.
Chupp
,
R.
, and
Dowler
,
C.
,
1991
, “
Simple Leakage Flow Model for Brush Seals
,”
AIAA
Paper No. 91-1913.10.2514/6.91-1913
7.
Chupp
,
R. E.
, and
Holle
,
G.
,
1996
, “
Generalizing Circular Brush Seal Leakage Through a Randomly Distributed Bristle Bed
,”
ASME J. Turbomach.
,
118
(
1
), pp.
153
161
.10.1115/1.2836596
8.
Chew
,
J.
, and
Hogg
,
S.
,
1997
, “
Porosity Modeling of Brush Seals
,”
ASME J. Tribol.
,
119
(
4
), pp.
769
775
.10.1115/1.2833883
9.
Turner
,
M. T.
,
Chew
,
J. W.
, and
Long
,
C. A.
,
1998
, “
Experimental Investigation and Mathematical Modeling of Clearance Brush Seals
,”
ASME J. Eng. Gas Turbines Power
,
120
(
3
), pp.
573
579
.10.1115/1.2818185
10.
Dogu
,
Y.
,
2005
, “
Investigation of Brush Seal Flow Characteristics Using Bulk Porous Medium Approach
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
136
144
.10.1115/1.1808425
11.
Pröstler
,
S.
,
2005
,
Modellierung Und Numerische Berechnungen von Wellenabdichtungen in Bürstenbauart
,
University of Bochum, Verlag Dr. Hut
, Bochum, Germany.
12.
Guardino
,
C.
, and
Chew
,
J. W.
,
2005
, “
Numerical Simulation of Three-Dimensional Bristle Bending in Brush Seals
,”
ASME J. Eng. Gas Turbines Power
,
127
(
3
), pp.
583
591
.10.1115/1.1850943
13.
Pugachev
,
A. O.
, and
Helm
,
P.
,
2009
, “
Calibration of Porous Medium Models for Brush Seals
,”
Proc. Inst. Mech. Eng. Part J. Power Energy
,
223
(
1
), pp.
83
91
.10.1243/09576509JPE641
14.
Neef
,
M.
,
Hepermann
,
F.
,
Sürken
,
N.
, and
Schettel
,
J.
,
2007
, “
Brush Seal Porosity Modeling: Applicability and Limitations
,”
Seventh European Conference on Turbomachinery
,
Athens, Greece
,
Mar. 5–9
, Paper No.
110
.
15.
Deville
,
L.
, and
Arghir
,
M.
,
2018
, “
Theoretical Analysis of Brush Seals Leakage Using Local Computational Fluid Dynamics Estimated Permeability Laws
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p.
062803
.10.1115/1.4038469
16.
Lelli
,
D.
,
Chew
,
J. W.
, and
Cooper
,
P.
,
2006
, “
Combined Three-Dimensional Fluid Dynamics and Mechanical Modeling of Brush Seals
,”
ASME J. Turbomach.
,
128
(
1
), pp.
188
195
.10.1115/1.2103093
17.
Gail
,
A.
, and
Beichl
,
S.
,
2003
, “
The MTU Brush Seal Design
,” MTU Aero Engines, Munich, Germany, accessed July 1, 2024, http://wwwmtude/en/technologies/engineering_news/production/Gail_MTU_brush_seal_designpdf
18.
Guimet
,
L.
,
Sauvinet
,
F.
,
Constant
,
O.
,
Reynaud
,
P.
,
Mengelle
,
C.
, and
Lefrancois
,
M.
,
2013
, “
Brush-Type Circular Seal
,” Patent No. 9,157,531, Commissariat à l'énergie atomique et aux énergies alternatives (Paris), Technetics Group France SAS (Saint Etienne).
19.
Ruggiero
,
E.
,
Allen
,
J.
, and
Lusted
,
R.
,
2008
, “
Heat Generation Characteristics of a Carbon Fiber Brush Seal
,”
AIAA
Paper No. 2008-4508.10.2514/6.2008-4508
20.
Outirba
,
B.
, and
Hendrick
,
P.
,
2014
, “
Experimental Testing of Carbon Brush Seals for Aero Engines Bearing Chambers
,”
ASME
Paper No. GT2014-25684.10.1115/GT2014-25684
21.
Changizi
,
A.
,
Stiharu
,
I.
,
Outirba
,
B.
, and
Hendrick
,
P.
,
2021
, “
Mathematical Model of Brush Seals for Gas Turbine Engines: A Nonlinear Analytical Solution
,”
Adv. Mech. Eng.
,
13
(
9
), pp.
1
12
.10.1177/16878140211043396
22.
Reddy
,
J. N.
,
2015
,
An Introduction to Nonlinear Finite Element Analysis
,
Oxford University Press
, Oxford, UK.
23.
Forchheimer
,
P.
,
1901
, “
Wasserbewegung Durch Boden
,”
Z. Ver. Dtsch. Ing.
,
45
(
50
), pp.
1781
1788
.
24.
Elmkies
,
P.
,
Lasseux
,
D.
,
Bertin
,
H.
,
Pichery
,
T.
, and
Zaitoun
,
A.
,
2002
, “
Polymer Effect on Gas/Water Flow in Porous Media
,”
SPE/DOE 13th Symposium on Improved Oil Recovery
,
Tulsa, OK
,
Apr. 13–17
, Paper No. SPE
75160
.10.2118/75160-MS
25.
Neale
,
G.
, and
Nader
,
W.
,
1974
, “
Practical Significance of Brinkman's Extension of Darcy's Law: Coupled Parallel Flows Within a Channel and a Bounding Porous Medium
,”
Can. J. Chem. Eng.
,
52
(
4
), pp.
475
478
.10.1002/cjce.5450520407
26.
Bruneau
,
C.-H.
,
Lasseux
,
D.
, and
Valdés-Parada
,
F. J.
,
2020
, “
Comparison Between Direct Numerical Simulations and Effective Models for Fluid-Porous Flows Using Penalization
,”
Meccanica
,
55
(
5
), pp.
1061
1077
.10.1007/s11012-020-01149-7
27.
Meier
,
C.
,
Popp
,
A.
, and
Wall
,
W. A.
,
2015
, “
A Locking-Free Finite Element Formulation and Reduced Models for Geometrically Exact Kirchhoff Rods
,”
Comput. Methods Appl. Mech. Eng.
,
290
, pp.
314
341
.10.1016/j.cma.2015.02.029
28.
Auriault
,
J.-L.
,
Boutin
,
C.
, and
Geindreau
,
C.
,
2010
,
Homogenization of Coupled Phenomena in Heterogenous Media
, Vol. 149,
Wiley
, Hoboken, NJ.
29.
Whitaker
,
S.
,
2013
,
The Method of Volume Averaging
, Vol. 13,
Springer Science & Business Media
, Berlin, Germany.
30.
Bottaro
,
A.
,
2019
, “
Flow Over Natural or Engineered Surfaces: An Adjoint Homogenization Perspective
,”
J. Fluid Mech.
,
877
, p.
P1
.10.1017/jfm.2019.607
31.
Lasseux
,
D.
,
Valdés-Parada
,
F. J.
, and
Bottaro
,
A.
,
2021
, “
Upscaled Model for Unsteady Slip Flow in Porous Media
,”
J. Fluid Mech.
,
923
, p.
A37
.10.1017/jfm.2021.606
32.
Lasseux
,
D.
, and
Valdés-Parada
,
F. J.
,
2022
, “
A Macroscopic Model for Immiscible Two-Phase Flow in Porous Media
,”
J. Fluid Mech.
,
944
, p.
A43
.10.1017/jfm.2022.487
You do not currently have access to this content.