Abstract

The thermal stability of a system of two superimposed miscible viscous fluid layers, under gravitational modulation, is investigated using linear stability analysis. It is well known in the literature that in the absence of gravitational modulation, there exist two convection regimes depending on the buoyancy number: the single-cell regime, where convection is oscillating and occupies the entire volume of the two fluid layers, and the stratified regime where stationary convection occurs in each fluid layer. Using Chebyshev's spectral collocation method and Floquet's theory, the numerical results show that under gravitational modulation, single-cell convection oscillates at half the frequency of the external oscillation (subharmonic threshold), while the stratified regime oscillates at a frequency equal to that of the forcing (harmonic threshold). The critical buoyancy number corresponding to the transition between the two convection regimes depends, in addition to the viscosity ratio and the depth of the two layers, on certain dimensionless frequencies permeating this transition and also on the amplitude of oscillation via the Froude number. In the plane of the critical Rayleigh number versus dimensionless modulation frequency, the branch associated with stratified convection does not depend on the buoyancy number for equal viscosities whereas this is the case for the whole-convection regime. For different viscosities, both convection regimes depend on the buoyancy number. At last, in the stratified regime (harmonic threshold), the critical value of the viscosity contrast, corresponding to the passage from an active layer to a passive layer and vice versa, increases with the modulation frequency.

References

1.
Richter
,
F. M.
, and
Johnson
,
C. E.
,
1974
, “
Stability of a Chemically Layered Mantle
,”
J. Geophys. Res. (1896-1977
),
79
(
11
), pp.
1635
1639
.10.1029/JB079i011p01635
2.
Busse
,
F.
,
1981
, “
On the Aspect Ratios of Two-Layer Mantle Convection
,”
Phys. Earth Planet. Inter.
,
24
(
4
), pp.
320
324
.10.1016/0031-9201(81)90119-9
3.
Ellsworth
,
K.
, and
Schubert
,
G.
,
1988
, “
Numerical Models of Thermally and Mechanically Coupled Two-Layer Convection of Highly Viscous Fluids
,”
Geophys. J. Int.
,
93
(
2
), pp.
347
363
.10.1111/j.1365-246X.1988.tb02007.x
4.
Cserepes
,
L.
, and
Rabinowicz
,
M.
,
1985
, “
Gravity and Convection in a Two-Layer Mantle
,”
Earth Planet. Sci. Lett.
,
76
(
1–2
), pp.
193
207
.10.1016/0012-821X(85)90159-1
5.
Olson
,
P.
,
1984
, “
An Experimental Approach to Thermal Convection in a Two-Layered Mantle
,”
J. Geophys. Res.: Solid Earth
,
89
(
B13
), pp.
11293
11301
.10.1029/JB089iB13p11293
6.
Renardy
,
Y.
, and
Renardy
,
M.
,
1985
, “
Perturbation Analysis of Steady and Oscillatory Onset in a Bénard Problem With Two Similar Liquids
,”
Phys. Fluids
,
28
(
9
), pp.
2699
2708
.10.1063/1.865227
7.
Renardy
,
Y.
,
1986
, “
Interfacial Stability in a Two‐Layer Bénard Problem
,”
Phys. Fluids
,
29
(
2
), pp.
356
363
.10.1063/1.865719
8.
Renardy
,
M.
, and
Renardy
,
Y.
,
1988
, “
Bifurcating Solutions at the Onset of Convection in the Bénard Problem for Two Fluids
,”
Phys. D: Nonlinear Phenom.
,
32
(
2
), pp.
227
252
.10.1016/0167-2789(88)90053-X
9.
Olson
,
P.
,
Silver
,
P. G.
, and
Carlson
,
R. W.
,
1990
, “
The Large-Scale Structure of Convection in the Earth's Mantle
,”
Nature
,
344
(
6263
), pp.
209
215
.10.1038/344209a0
10.
Olson
,
P.
, and
Kincaid
,
C.
,
1991
, “
Experiments on the Interaction of Thermal Convection and Compositional Layering at the Base of the Mantle
,”
J. Geophys. Res.: Solid Earth
,
96
(
B3
), pp.
4347
4354
.10.1029/90JB02530
11.
Limare
,
A.
,
Jaupart
,
C.
,
Kaminski
,
E.
,
Fourel
,
L.
, and
Farnetani
,
C. G.
,
2019
, “
Convection in an Internally Heated Stratified Heterogeneous Reservoir
,”
J. Fluid Mech.
,
870
, pp.
67
105
.10.1017/jfm.2019.243
12.
Davaille
,
A.
,
1999
, “
Two-Layer Thermal Convection in Miscible Viscous Fluids
,”
J. Fluid Mech.
,
379
, pp.
223
253
.10.1017/S0022112098003322
13.
Jellinek
,
A.
, and
Manga
,
M.
,
2002
, “
The Influence of a Chemical Boundary Layer on the Fixity, Spacing and Lifetime of Mantle Plumes
,”
Nature
,
418
(
6899
), pp.
760
763
.10.1038/nature00979
14.
Davaille
,
A.
,
1999
, “
Simultaneous Generation of Hotspots and Superswells by Convection in a Heterogeneous Planetary Mantle
,”
Nature
,
402
(
6763
), pp.
756
760
.10.1038/45461
15.
Tackley
,
P. J.
,
2000
, “
Mantle Convection and Plate Tectonics: Toward an Integrated Physical and Chemical Theory
,”
Science
,
288
(
5473
), pp.
2002
2007
.10.1126/science.288.5473.2002
16.
Le Bars
,
M.
, and
Davaille
,
A.
,
2002
, “
Stability of Thermal Convection in Two Superimposed Miscible Viscous Fluids
,”
J. Fluid Mech.
,
471
, pp.
339
363
.10.1017/S0022112002001878
17.
Le Bars
,
M.
, and
Davaille
,
A.
,
2004
, “
Large Interface Deformation in Two-Layer Thermal Convection of Miscible Viscous Fluids
,”
J. Fluid Mech.
,
499
, pp.
75
110
.10.1017/S0022112003006931
18.
Le Bars
,
M.
, and
Davaille
,
A.
,
2004
, “
Whole Layer Convection in a Heterogeneous Planetary Mantle
,”
J. Geophys. Res.: Solid Earth
,
109
(
B3
), pp.
1
23
.10.1029/2003JB002617
19.
Jaupart
,
C.
,
Molnar
,
P.
, and
Cottrell
,
E.
,
2007
, “
Instability of a Chemically Dense Layer Heated From Below and Overlain by a Deep Less Viscous Fluid
,”
J. Fluid Mech.
,
572
, pp.
433
469
.10.1017/S0022112006003521
20.
Echchadli
,
M.
, and
Aniss
,
S.
,
2021
, “
Thermal Convection Instability of Two Miscible Viscous Fluids in A Hele-Shaw Cell
,”
J. Porous Media
,
24
(
10
), pp.
31
47
.10.1615/JPorMedia.2021026097
21.
Echchadli
,
M.
, and
Aniss
,
S.
,
2022
, “
Thermal Convection Instability of Two Miscible Viscous Fluids in a Rotating Annular Hele–Shaw Cell
,”
Phys. Fluids
,
34
(
8
) p. 082111.10.1063/5.0098332
22.
Wilczynski
,
F.
, and
Hughes
,
D. W.
,
2019
, “
Stability of Two-Layer Miscible Convection
,”
Phys. Rev. Fluids
,
4
(
10
), p.
103502
.10.1103/PhysRevFluids.4.103502
23.
Gresho
,
P. M.
, and
Sani
,
R. L.
,
1970
, “
The Effects of Gravity Modulation on the Stability of a Heated Fluid Layer
,”
J. Fluid Mech.
,
40
(
4
), pp.
783
806
.10.1017/S0022112070000447
24.
Gershuni
,
G. Z.
,
Zhukhovitskii
,
E. M.
, and
Kelly
,
R. E.
,
1977
, “
Convective Stability of Incompressible Fluids
,”
ASME J. Appl. Mech.
,
44
(
3
), pp.
516
516
.10.1115/1.3424123
25.
Gershuni
,
G. Z.
, and
Lyubimov
,
V. A.
,
1998
,
Thermal Vibration Convection
,
Wiley
,
Chichester
.
26.
Aniss
,
S.
,
Souhar
,
M.
, and
Belhaq
,
M.
,
2000
, “
Asymptotic Study of the Convective Parametric Instability in Hele-Shaw Cell
,”
Phys. Fluids
,
12
(
2
), pp.
262
268
.10.1063/1.870304
27.
Boulal
,
T.
,
Aniss
,
S.
,
Belhaq
,
M.
, and
Rand
,
R.
,
2007
, “
Effect of Quasiperiodic Gravitational Modulation on the Stability of a Heated Fluid Layer
,”
Phys. Rev. E
,
76
(
5
), p.
056320
.10.1103/PhysRevE.76.056320
28.
Boulal
,
T.
,
Aniss
,
S.
,
Belhaq
,
M.
, and
Azouani
,
A.
,
2008
, “
Effect of Quasi-Periodic Gravitational Modulation on the Convective Instability in Hele-Shaw Cell
,”
Int. J. Non-Linear Mech.
,
43
(
9
), pp.
852
857
.10.1016/j.ijnonlinmec.2008.05.004
29.
Aniss
,
S.
,
Souhar
,
M.
, and
Belhaq
,
M.
,
2000
, “
Effet D'une Modulation Magnétique Sur le Seuil D'instabilité Convectif au Sein D'une Couche de Liquide Magnétique Chauffée Par le Haut
,”
C. R. de L'Académie Des Sci.-Ser. IIB-Mech.
,
328
(
5
), pp.
399
406
.10.1016/S1620-7742(00)00045-3
30.
Aniss
,
S.
,
Belhaq
,
M.
, and
Souhar
,
M.
,
2001
, “
Effects of a Magnetic Modulation on the Stability of a Magnetic Liquid Layer Heated From Above
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
123
(
3
), pp.
428
433
.10.1115/1.1370501
31.
Or
,
A. C.
,
1997
, “
Finite-Wavelength Instability in a Horizontal Liquid Layer on an Oscillating Plane
,”
J. Fluid Mech.
,
335
, pp.
213
232
.10.1017/S0022112096004545
32.
Talib
,
E.
, and
Juel
,
A.
,
2007
, “
Instability of a Viscous Interface Under Horizontal Oscillation
,”
Phys. Fluids
,
19
(
9
), p.
092102
.10.1063/1.2762255
33.
Lanczos, C.
,
1956
, “Applied analysis,” Prentice-Hall, Englewood Cliffs, N.J.
You do not currently have access to this content.