Abstract

The concept of understanding and predicting the behavior of flow characteristics such as velocity, pressure, and energy in the presence of bubbles and droplets of various morphologies has always fascinated researchers. Flow aeration has been a challenging topic contributing to drag force, flow morphology, and cavitation, which was successfully investigated through numerical studies. Subsequently, it has resulted in the development of numerical models that can predict and simulate the self-aerated flow more accurately with less cost and in a shorter time frame. This study presents a numerical model that utilizes drag coefficient, disperse phase diameter, and interfacial area concentration to provide a novel idea of drag force in the presence of bubbles and droplets in flow. As part of enhancing the numerical model's precision, a dynamic calibration parameter for drag coefficient is incorporated which captures the macro-and microflow characteristics as over- and subgrid effects. Additionally, bubbles and/or droplets lead to a variable eddy viscosity that implemented in the numerical model as modified mixture viscosity. Furthermore, this numerical model is implemented on a stepped spillway, a well-known structure that causes aeration, to validate its accuracy and present a better understanding of the flow velocity changes, pressure differences, aeration, and energy. Finally, this numerical model predicts the self-aeration with consistent precision to experimental data that can be used alternatively to create, investigate, and optimize the design of complex geometries like stepped spillways.

References

1.
Wei
,
W.
,
Xu
,
W.
,
Deng
,
J.
,
Tian
,
Z.
, and
Zhang
,
F.
,
2017
, “
Free-Surface Air Entrainment in Open-Channel Flows
,”
Sci. China Technol. Sci.
,
60
(
6
), pp.
893
901
.10.1007/s11431-016-0220-1
2.
Chanson
,
H.
,
Leng
,
X.
, and
Wang
,
H.
,
2021
, “
Challenging Hydraulic Structures of the Twenty-First Century – From Bubbles, Transient Turbulence to Fish Passage
,”
J. Hydraul. Res.
,
59
(
1
), pp.
21
35
.10.1080/00221686.2020.1871429
3.
Zabaleta
,
F.
,
Bombardelli
,
F. A.
, and
Toro
,
J. P.
,
2020
, “
Towards an Understanding of the Mechanisms Leading to Air Entrainment in the Skimming Flow Over Stepped Spillways
,”
Environ. Fluid Mech.
,
20
(
2
), pp.
375
392
.10.1007/s10652-019-09729-2
4.
Hien
,
L. T. T.
, and
Duc
,
D. H.
,
2020
, “
Numerical Simulation of Free Surface Flow on Spillways and Channel Chutes With Wall and Step Abutments by Coupling Turbulence and Air Entrainment Models
,”
Water (Basel)
,
12
(
11
), p.
3036
.10.3390/w12113036
5.
Valero
,
D.
, and
Bung
,
D. B.
,
2018
, “
Reformulating Self-Aeration in Hydraulic Structures: Turbulent Growth of Free Surface Perturbations Leading to Air Entrainment
,”
Int. J. Multiphase Flow
,
100
, pp.
127
142
.10.1016/j.ijmultiphaseflow.2017.12.011
6.
Blake
,
B.
,
Robert
,
E.
,
Christopher
,
T.
,
Taylor
,
H.
, and
Y.
, and
L.
,
2021
, “
Air Entrained in Flow Along a Steep-Stepped Spillway: Data and Insights From a Hydraulic Model
,”
J. Hydraul. Eng.
,
147
(
5
), p.
05021001
.10.1061/(ASCE)HY.1943-7900.0001880
7.
Raza
,
A.
,
Wan
,
W.
, and
Mehmood
,
K.
,
2021
, “
Stepped Spillway Slope Effect on Air Entrainment and Inception Point Location
,”
Water (Basel)
,
13
(
10
), p.
1428
.10.3390/w13101428
8.
Gualtieri
,
C.
, and
Chanson
,
H.
,
2021
, “
Physical and Numerical Modelling of Air-Water Flows: An Introductory Overview
,”
Environ. Modell. Software
,
143
, p.
105109
.10.1016/j.envsoft.2021.105109
9.
Masouminia
,
M.
, and
Türker
,
U.
,
2022
, “
Numerical Investigation of the Effect of Rigid Vegetation at an Inclined Bank, on Streamflow Hydrodynamics
,”
ASME J. Fluids Eng., Trans. ASME
,
144
(
9
), p.
091204
.10.1115/1.4053899
10.
Viti
,
N.
,
Valero
,
D.
, and
Gualtieri
,
C.
,
2019
, “
Numerical Simulation of Hydraulic Jumps. Part 2: Recent Results and Future Outlook
,”
Water (Basel)
,
11
(
1
), p.
28
.10.3390/w11010028
11.
Wei
,
W.
,
Xu
,
W.
,
Deng
,
J.
,
Tian
,
Z.
, and
Zhang
,
F.
,
2019
, “
Bubble Formation and Scale Dependence in Free-Surface Air Entrainment
,”
Sci. Rep.
,
9
(
1
), p.
11008
.10.1038/s41598-019-46883-5
12.
Ashoor
,
A.
, and
Riazi
,
A.
,
2019
, “
Stepped Spillways and Energy Dissipation: A Non-Uniform Step Length Approach
,”
Appl. Sci.
,
9
(
23
), p.
5071
.10.3390/app9235071
13.
Chen
,
Q.
,
Dai
,
G.
, and
Liu
,
H.
,
2002
, “
Volume of Fluid Model for Turbulence Numerical Simulation of Stepped Spillway Overflow
,”
J. Hydraul. Eng.
,
128
(
7
), pp.
683
688
.10.1061/(ASCE)0733-9429(2002)128:7(683)
14.
Cheng
,
X.
,
Chen
,
Y.
, and
Luo
,
L.
,
2006
, “
Numerical Simulation of Air-Water Two-Phase Flow Over Stepped Spillways
,”
Sci. China, Ser. E: Technol. Sci.
,
49
(
6
), pp.
674
684
.10.1007/s10288-006-2029-2
15.
Qian
,
Z.
,
Hu
,
X.
,
Huai
,
W.
, and
Amador
,
A.
,
2009
, “
Numerical Simulation and Analysis of Water Flow Over Stepped Spillways
,”
Sci. China Ser. E: Technol. Sci.
,
52
(
7
), pp.
1958
1965
.10.1007/s11431-009-0127-z
16.
Ghaderi
,
A.
,
Abbasi
,
S.
, and
Di Francesco
,
S.
,
2021
, “
Numerical Study on the Hydraulic Properties of Flow Over Different Pooled Stepped Spillways
,”
Water
,
13
(
5
), p.
710
.10.3390/w13050710
17.
Almeland
,
S. K.
,
Mukha
,
T.
, and
Bensow
,
R. E.
,
2021
, “
An Improved Air Entrainment Model for Stepped Spillways
,”
Appl. Math. Modell.
,
100
, pp.
170
191
.10.1016/j.apm.2021.07.016
18.
Mendes
,
L. S.
,
Lara
,
J. L.
, and
Viseu
,
M. T.
,
2021
, “
Is the Volume-of-Fluid Method Coupled With a Sub-Grid Bubble Equation Efficient for Simulating Local and Continuum Aeration?
,”
Water
,
13
(
11
), p.
1535
.10.3390/w13111535
19.
Lubchenko
,
N.
,
Magolan
,
B.
,
Sugrue
,
R.
, and
Baglietto
,
E.
,
2018
, “
A More Fundamental Wall Lubrication Force From Turbulent Dispersion Regularization for Multiphase CFD Applications
,”
Int. J. Multiphase Flow
,
98
, pp.
36
44
.10.1016/j.ijmultiphaseflow.2017.09.003
20.
Rzehak
,
R.
,
Ziegenhein
,
T.
,
Kriebitzsch
,
S.
,
Krepper
,
E.
, and
Lucas
,
D.
,
2017
, “
Unified Modeling of Bubbly Flows in Pipes, Bubble Columns, and Airlift Columns
,”
Chem. Eng. Sci.
,
157
, pp.
147
158
.10.1016/j.ces.2016.04.056
21.
Liao
,
Y.
,
Ma
,
T.
,
Liu
,
L.
,
Ziegenhein
,
T.
,
Krepper
,
E.
, and
Lucas
,
D.
,
2018
, “
Eulerian Modelling of Turbulent Bubbly Flow Based on a Baseline Closure Concept
,”
Nucl. Eng. Des.
,
337
, pp.
450
459
.10.1016/j.nucengdes.2018.07.021
22.
Colombo
,
M.
,
Rzehak
,
R.
,
Fairweather
,
M.
,
Liao
,
Y.
, and
Lucas
,
D.
,
2021
, “
Benchmarking of Computational Fluid Dynamic Models for Bubbly Flows
,”
Nucl. Eng. Des.
,
375
, p.
111075
.10.1016/j.nucengdes.2021.111075
23.
Baylar
,
A.
,
Emiroglu
,
M. E.
, and
Bagatur
,
T.
,
2006
, “
An Experimental Investigation of Aeration Performance in Stepped Spillways
,”
Water Environ. J.
,
20
(
1
), pp.
35
42
.10.1111/j.1747-6593.2005.00009.x
24.
Nakasone
,
H.
,
1987
, “
Study of Aeration at Weirs and Cascades
,”
J. Environ. Eng.
,
113
(
1
), pp.
64
81
.10.1061/(ASCE)0733-9372(1987)113:1(64)
25.
Cheng
,
X.
, and
Chen
,
X.
,
2013
, “
Numerical Simulation of Dissolved Oxygen Concentration in Water Flow Over Stepped Spillways
,”
Water Environ. Res.
,
85
(
5
), pp.
434
446
.10.2175/106143012X13560205144416
26.
Schmidtke
,
M.
, and
Lucas
,
D.
,
2009
, “
CFD Approaches for Modelling Bubble Entrainment by an Impinging Jet
,”
Sci. Technol. Nucl. Install.
,
2009
(
1
), pp.
1
12
.10.1155/2009/148436
27.
Porombka
,
P.
, and
Höhne
,
T.
,
2015
, “
Drag and Turbulence Modelling for Free Surface Flows Within the Two-Fluid Euler–Euler Framework
,”
Chem. Eng. Sci.
,
134
, pp.
348
359
.10.1016/j.ces.2015.05.029
28.
Ishii
,
M.
, and
Mishima
,
K.
,
1984
, “
Two-Fluid Model and Hydrodynamic Constitutive Relations
,”
Nucl. Eng. Des.
,
82
(
2–3
), pp.
107
126
.10.1016/0029-5493(84)90207-3
29.
Ishii
,
M.
, and
Hibiki
,
T.
,
2011
, Thermo-Fluid Dynamics of Two-Phase Flow,
Springer Science & Business Media
, New York.10.1007/978-1-4419-7985-8
30.
Schiller
,
L.
, and
Naumann
,
Z.
,
1933
, “
A Drag Coefficient Correlation
,”
Zeit. Ver. Deutsch. Ing.
,
77
, pp.
318
320
.
31.
Morsi
,
S. A.
, and
Alexander
,
A. J.
,
1972
, “
An Investigation of Particle Trajectories in Two-Phase Flow Systems
,”
J. Fluid Mech.
,
55
(
2
), pp.
193
208
.10.1017/S0022112072001806
32.
Tomiyama
,
A.
, and
Takamasa
,
T.
,
1999
, “
Three-Dimensional Gas-Liquid Two-Phase Bubbly Flow in a C-Shaped Tube
,”
Ninth International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-9)
, Oct. 3–8,
San Francisco, CA
, pp.
302
318
.
33.
Ishii
,
M.
, and
Zuber
,
N.
,
1979
, “
Drag Coefficient and Relative Velocity in Bubbly, Droplet or Particulate Flows
,”
AIChE J.
,
25
(
5
), pp.
843
855
.10.1002/aic.690250513
34.
Chanson
,
H.
,
1995
, “
Predicting Oxygen Content Downstream of Weirs, Spillways and Waterways
,”
Proc. Inst. Civ. Eng.-Water Marit. Energy
,
112
(
1
), pp.
20
30
.10.1680/iwtme.1995.27390
35.
Tomiyama
,
A.
,
1998
, “
Struggle With Computational Bubble Dynamics
,”
Multiphase Sci. Technol.
,
10
(
4
), pp.
369
405
.
36.
Höhne
,
T.
, and
Porombka
,
P.
,
2018
, “
Modelling Horizontal Two-Phase Flows Using Generalized Models
,”
Ann Nucl Energy
,
111
, pp.
311
316
.10.1016/j.anucene.2017.09.018
37.
Chanson
,
H.
,
1993
, “
Stepped Spillway Flows and Air Entrainment
,”
Can. J. Civ. Eng.
,
20
(
3
), pp.
422
435
.10.1139/l93-057
38.
Brucato
,
A.
,
Grisafi
,
F.
, and
Montante
,
G.
,
1998
, “
Particle Drag Coefficients in Turbulent Fluids
,”
Chem. Eng. Sci.
,
53
(
18
), pp.
3295
3314
.10.1016/S0009-2509(98)00114-6
39.
Meusel
,
W.
,
1989
, “
Beitrag Zur Modellierung Von Gas-Flüssigkeits-Reaktoren Auf Der Basis Relevanter Mikroprozesse
,” Ph.D. dissertation, Ingenieurhochschule Köthen.
40.
Gulliver
,
J. S.
,
Thene
,
J. R.
, and
Rindels
,
A. J.
,
1990
, “
Indexing Gas Transfer in Self-Aerated Flows
,”
J. Environ. Eng.
,
116
(
3
), pp.
503
523
.10.1061/(ASCE)0733-9372(1990)116:3(503)
41.
Carosi
,
G.
, and
Chanson
,
H.
,
2006
, “
Air-Water Time and Length Scales in Skimming Flows on a Stepped Spillway: Application to the Spray Characterisation
,” The University of Queensland, St Lucia QLD, Australia, Report No.
CH59/06
.10.14264/7903
42.
Zhou
,
Y.
,
Wu
,
J.
,
Ma
,
F.
, and
Qian
,
S.
,
2021
, “
Experimental Investigation of the Hydraulic Performance of a Hydraulic-Jump-Stepped Spillway
,”
KSCE J. Civ. Eng.
,
25
(
10
), pp.
3758
3765
.10.1007/s12205-021-1709-y
43.
Matos
,
J.
,
Novakoski
,
C. K.
,
Ferla
,
R.
,
Marques
,
M. G.
,
Dai Prá
,
M.
,
Canellas
,
A. V. B.
, and
Teixeira
,
E. D.
,
2022
, “
Extreme Pressures and Risk of Cavitation in Steeply Sloping Stepped Spillways of Large Dams
,”
Water
,
14
(
3
), p.
306
.10.3390/w14030306
44.
Chanson
,
H.
,
2022
, “
Energy Dissipation on Stepped Spillways and Hydraulic Challenges—Prototype and Laboratory Experiences
,”
J. Hydrodyn.
,
34
(
1
), pp.
52
62
.10.1007/s42241-022-0005-8
You do not currently have access to this content.