Abstract

Actuator-disk rotor models are important simulation tools for cost-effective industrial axial fan system analysis. Actuator-disk fan model performance, however, is constrained by the conventional use of two-dimensional airfoil coefficient input data, which limits the accuracy of the models to a narrow operating range free from significant radial blade flow. Radial blade flow is characteristic of off-design fan operation, which is often unavoidable within typical industrial fan system environments, so the enhancement of actuator-disk model performance for these conditions is desired. This paper accordingly presents a new means of robustly determining actuator-disk model coefficient inputs that are suitable for a wide range of fan operating conditions. The proposed augmented actuator-disk method (AADM) capitalizes on new insights into the unique aerodynamic behavior of low-pressure axial fan rotors. The performance of the AADM is evaluated for two different industrial cooling fans and is shown to outperform existing actuator-disk coefficient formulations through computational fluid dynamics simulations. The AADM is shown to better predict key fan performance metrics, spanwise blade force distributions, and to produce flow fields that are more physically representative (an important feature for industrial heat exchanger studies where the AADM is anticipated to be commonly applied). The AADM has been developed to be easily adopted in generic industrial fan analyses and is expected to serve as a valuable springboard for future actuator-disk fan model developments.

References

1.
Schneider
,
M. S.
,
Nitzsche
,
J.
, and
Hennings
,
H.
,
2016
, “
Accurate Load Prediction by BEM With Airfoil Data From 3D RANS Simulations
,”
J. Phys.: Conf. Ser.
,
753
, pp.
1
7
.10.1088/1742-6596/753/8/082016
2.
Engelbrecht
,
R.
,
Meyer
,
C. J.
, and
van der Spuy
,
S. J.
,
2019
, “
Modeling Strategy for the Analysis of Forced Draft Air-Cooled Condensers Using Rotational Fan Models
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
5
), pp.
051011
051020
.10.1115/1.4042590
3.
Chuiton
,
F. L.
,
2004
, “
Actuator Disc Modelling for Helicopter Rotors
,”
Aerosp. Sci. Technol.
,
8
(
4
), pp.
285
297
.10.1016/j.ast.2003.10.004
4.
van der Spuy
,
S. J.
,
von Backström
,
T. W.
, and
Kröger
,
D. G.
,
2010
, “
An Evaluation of Simplified Methods to Model the Performance of Axial Flow Fan Arrays
,”
R D J. S. Afr. Inst. Mech. Eng.
,
26
, pp.
12
20
.https://cdn.ymaws.com/www.saimeche.org.za/resource/collection/48753329-D6D0-4C4B-ADAD-27DC86A4EE14/2009_12__Van_der_Spuy_et_al._-_FINAL_R_-_2010_26_12-20.pdf
5.
Snel
,
H.
,
Houwink
,
R.
,
Bosschers
,
J.
,
Piers
,
W. J.
,
van Bussel
,
G. J. W.
, and
Bruining
,
A.
,
1993
, “
Sectional Prediction of 3-D Effects for Stalled Flow on Rotating Blades and Comparison With Measurements
,”
Proceedings of European Community Wing Energy Conference
, Lübeck-Travemünde, Germany, Mar. 08–12, pp.
395
399
.
6.
Himmelskamp
,
H.
,
1945
, “
Profile Investigations on a Rotating Airscrew
,” Ph.D. thesis,
University of Göttingen
,
Göttingen, Germany
.
7.
Breton
,
S.
,
Coton
,
F. N.
, and
Moe
,
G.
,
2008
, “
A Study on Rotational Effects and Different Stall Delay Models Using a Prescribed Wake Vortex Scheme and NREL Phase VI Experiment Data
,”
Wind Energy
,
11
(
5
), pp.
459
482
.10.1002/we.269
8.
Ouakki
,
Y.
, and
Arbaoui
,
A.
,
2023
, “
Verification, Calibration, and Validation of Stall Delay Models Using NREL Phase VI and Mexico Data
,”
J. Renewable Sustainable Energy
,
15
(
1
), p.
013301
.10.1063/5.0104437
9.
van Rooyen
,
J. A.
, and
Kröger
,
D. G.
,
2008
, “
Performance Trends of an Air-Cooled Steam Condenser Under Windy Conditions
,”
ASME J. Eng. Gas Turbines Power
,
130
(
2
), p.
023006
.10.1115/1.2771567
10.
Marincowitz
,
F. S.
,
Owen
,
M. T. F.
, and
Muiyser
,
J.
,
2021
, “
The Effect of Windscreens and Walkways on Air-Cooled Condenser Performance and Fan Blade Dynamic Loading
,”
ASME J. Eng. Gas Turbines Power
,
143
(
10
), p.
101019
.10.1115/1.4051640
11.
van der Spuy
,
S. J.
,
Le Roux
,
F. N.
,
von Backström
,
T. W.
, and
Kröger
,
D. G.
,
2011
, “
The Simulation of an Axial Flow Fan Performance Curve at Low Flow Rates
,”
ASME
Paper No. GT2011-45709.10.1115/GT2011-45709
12.
Louw
,
F. G.
,
2015
, “
Investigation of the Flow Field in the Vicinity of an Axial Flow Fan During Low Flow Rates
,” Ph.D. thesis,
Stellenbosch University
,
Stellenbosch, South Africa
.
13.
Meyer
,
C. J.
,
2005
, “
Numerical Investigation of the Effect of Inlet Flow Distortions on Forced Draught Air-Cooled Heat Exchanger Performance
,”
App. Therm. Eng.
,
25
(
11–12
), pp.
1634
1649
.10.1016/j.applthermaleng.2004.11.012
14.
Venter
,
A. J.
,
Owen
,
M. T. F.
, and
Muiyser
,
J.
,
2021
, “
A Numerical Analysis of Windscreen Effects on Air-Cooled Condenser Fan Performance
,”
App. Therm. Eng.
,
186
, p.
116416
.10.1016/j.applthermaleng.2020.116416
15.
Marincowitz
,
F.
,
Owen
,
M.
,
Muiyser
,
J.
, and
Holkers
,
P.
,
2022
, “
Uniformity Index as a Universal Air-Cooled Condenser Fan Performance Metric
,”
Int. J. Turbomach. Propul. Power
,
7
(
4
), p.
35
.10.3390/ijtpp7040035
16.
Guntur
,
S.
,
2013
, “
A Detailed Study of the Rotational Augmentation and Dynamic Stall Phenomena for Wind Turbines
,”
Ph.D. thesis
,
Technical University of Denmark
,
Lyngby, Denmark
.https://backend.orbit.dtu.dk/ws/portalfiles/portal/86307371/A_Detailed_Study_of_the_Rotational.pdf
17.
Venter
,
A. J.
,
Owen
,
M. T. F.
, and
Muiyser
,
J.
,
2024
, “
The Effects of Rotation and Solidity on the Aerodynamic Behavior of Low-Pressure Axial Flow Fans
,”
ASME J. Fluids Eng.
,
146
(
5
), p.
051205
.10.1115/1.4064384
18.
Venter
,
A. J.
,
Owen
,
M. T. F.
, and
Muiyser
,
J.
,
2025
, “
Benchmarking the Performance of the Actuator-Disk Method for Low-Pressure Axial Flow Fan Simulation
,”
ASME J. Fluids Eng.
,
147
(
1
), p.
011001
.10.1115/1.4065806
19.
Meyer
,
C. J.
, and
Kröger
,
D. G.
,
2001
, “
Numerical Simulation of the Flow Field in the Vicinity of an Axial Flow Fan
,”
Int. J. Numer. Methods Fluids
,
36
(
8
), pp.
947
969
.10.1002/fld.161
20.
Bredell
,
J. R.
,
Kröger
,
D. G.
, and
Thiart
,
G. D.
,
2006
, “
Numerical Investigation Into Aerodynamic Blade Loading in Large Axial Flow Fans Operating Under Distorted Inflow Conditions
,”
R D J. S. Afr. Inst. Mech. Eng.
,
22
(
2
), pp.
11
17
.https://cdn.ymaws.com/www.saimeche.org.za/resource/collection/B17255AE-EBE6-4376-A558-782017BC4F4D/Bredell__Kr_ger_and_Thiart-2005_17__600_dpi_-_2006__22_2___1.pdf
21.
Tieghi
,
L.
,
Delibra
,
G.
,
Corsini
,
A.
, and
van der Spuy
,
J.
, and
ATI Associazione Termotecnica Italiana,
2020
, “
Numerical Investigation of CSP Air Cooled Condenser Fan
,”
E3S Web Conf.
,
197
, p.
11010
.10.1051/e3sconf/202019711010
22.
Bekker
,
G. M.
,
Meyer
,
C. J.
, and
van der Spuy
,
S. J.
,
2021
, “
Performance Enhancement of an Induced Draught Axial Flow Fan Through Pressure Recovery
,”
R D J. S. Afr. Inst. Mech. Eng.
,
57
, pp.
35
44
.10.17159/2309-8988/2021/v37a5
23.
International Organisation for Standardisation
,
2007
,
Fans – Performance Testing Using Standardized Airways
, 3rd ed.,
ISO
, Geneva, Switzerland, ISO 5801:2017.https://www.iso.org/standard/56517.html
24.
Gur
,
O.
, and
Rosen
,
A.
,
2005
, “
Propeller Performance at Low Advance Ratio
,”
J. Aircr.
,
42
(
2
), pp.
435
441
.10.2514/1.6564
25.
Augustyn
,
P. H.
,
2013
, “
Experimental and Numerical Analysis of Axial Flow Fans
,”
M.E. thesis
,
Stellenbosch University
,
Stellenbosch, South Africa
.http://hdl.handle.net/10019.1/85720
26.
ANSYS
,
2022
,
ANSYS Fluent's User's Guide
,
ANSYS Inc
.,
Canonsburg, PA
.
27.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Proceedings of 4th International Symposium on Turbulence, Heat and Mass Transfer
,
Antalya, Turkey
, Oct. 12–17, pp.
625
632
.https://cfd.spbstu.ru/agarbaruk/doc/2003_Menter,%20Kuntz,%20Langtry_Ten%20years%20of%20industrial%20experience%20with%20the%20SST%20turbulence%20model.pdf
28.
Roache
,
P. J.
,
1997
, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
123
160
.10.1146/annurev.fluid.29.1.123
29.
Anderson
,
J.
,
2016
,
Fundamentals of Aerodynamics
, 6th ed.,
McGraw-Hill Education
,
Columbus, OH
.
30.
Engelbrecht
,
R.
,
Laubscher
,
R.
, and
van der Spuy
,
J.
,
2020
, “
A Co-Simulation Approach to Modeling Air-Cooled Condensers in Windy Conditions
,”
AMSE
Paper No. GT2020-16047.10.1115/GT2020-16047
You do not currently have access to this content.