A series of tests was conducted to provide data for the design of premixing-prevaporizing fuel-air mixture preparation systems for aircraft gas turbine engine combustors. Fifteen configurations of four different fuel-air mixture preparation system design concepts were evaluated to determine fuel-air mixture uniformity at the system exit over a range of conditions representative of cruise operation for a modern commercial turbofan engine. Operating conditions, including pressure, temperature, fuel-air ratio, and velocity had no clear effect on mixture uniformity in systems which used low-pressure fuel injectors. However, performance of systems using pressure atomizing fuel nozzles and large-scale mixing devices was shown to be sensitive to operating conditions. Variations in system design variables were also evaluated and correlated. Mixture uniformity improved with increased system length, pressure drop, and number of fuel injection points per unit area. A premixing system compatible with the combustor envelope of a typical combustion system and capable of providing mixture nonuniformity (standard deviation/mean) below 15% over a typical range of cruise operating conditions was demonstrated.

This content is only available via PDF.
You do not currently have access to this content.