The presented work is concerned with two-phase flows similar to those in prefilming airblast atomizers and combustors employing film vaporization. Correlations for the multicomponent mixture properties and models for the calculations of the multicomponent evaporation were implemented in a well tested elliptic finite-volume code GAP-2D (S. Wittig et al., 1992, “Motion and Evaporation of Shear-Driven Liquid Films in Turbulent Gas,” ASME J. Eng. Gas Turbines Power 114, pp. 395–400) utilizing time-averaged quantities, k,ε turbulence model, wall functions, and curve-linear coordinates in the gas phase, adiabatic or diabatic conditions at the film plate, partially turbulent velocity profile, uniform temperature, and a rapid mixing approach in the wavy film. This new code GAP-2K was tested for stability, precision, and grid independence of the results by applying it to a turbulent hot air flow over a two-component liquid film, a mixture of water and ethanol in different concentrations. Both simulations and experiments were carried out over a wide range of inlet conditions, such as inlet pressure (1–2.6 bar), inlet temperature (298–573 K), inlet air velocity (30–120 m/s), initial liquid flow rate (0.3–1.2 cm2/s), and initial ethanol concentration (20–75 percent mass). Profiles of temperature, gas velocity, and concentration of the evaporating component normal to the film, and the development of the film temperature, the static pressure, the liquid flow rate, and the liquid compound along the film plate have been measured and compared with the simulation, showing a good match.

1.
Sattelmayer, Th., and Wittig, S., 1986, “Internal Flow Effects in Prefilming Airblast Atomizers: Mechanisms of Atomization and Droplet Spectra,” Trans. ASME (86-GT-150).
2.
Sattelmayer, Th., and Wittig, S., 1989, “Performance Characteristics of Prefilming Airblast Atomizers in Comparison with other Airblast Nozzles,” Encyclopedia of Fluid Mechanics, Vol. 8, Golf Publishing Company, Houston, pp. 1091–1141.
3.
Wittig, S., Noll, B., Himmelsbach, J., Hallmann, M., and Samenfink, W., 1991, “Experimentelle und theoretische Untersuchung der Stro¨mung und des Filmverhaltens in den Saugrohren von Ottomotoren,” Forschungsvereinigung Verbrennungskraftmaschinen (FVV), Informationstagung Motoren, Heft R 463.
4.
Wittig
,
S.
,
Himmelsbach
,
J.
,
Noll
,
B.
,
Feld
,
H. J.
, and
Samenfink
,
W.
,
1992
, “
Motion and Evaporation of Shear-Driven Liquid Films in Turbulent Gas
,”
ASME J. Eng. Gas Turbines Power
,
114
, pp.
395
400
.
5.
Whalley, P. B., 1987, Boiling, Condensation and Gas-Liquid Flow, Clarendon Press, Oxford.
6.
Sattelmayer, Th., 1985, “Zum Einfluß der ausgebildeten, turbulenten Luft-Flu¨ssigkeitsfilm-Stro¨mung auf den Filmzerfall und die Tropfenbildung am Austritt von Spalten geringer Ho¨he,” dissertation, Universita¨t Karlsruhe, Germany.
7.
Spalding, D. B., 1977, Genmix—A General Computer Program for Two-Dimensional Parabolic Phenomena, Pergamon Press, Oxford.
8.
Sill, K. H., 1982, “Wa¨rme- und Stoffu¨bergang in turbulenten Stro¨mungsgrenzschichten la¨ngs verdunstender welliger Wasserfilme,” Dissertation, Universita¨t Karlsruhe, Germany.
9.
Burck
,
E.
,
1969
, “
Der Einfluß der Prandtl-Zahl auf den Wa¨rmeu¨bergang und Druckverlust ku¨nstlich aufgerauhter Stro¨mungskana¨le
,”
Wa¨rme-Stoffu¨bertrag.
,
2
, pp.
87
98
.
10.
Elsa¨ßer, A., Samenfink, W., Wittig, S., Ebner, J., and Dullenkopf, K., 1996, “Velocity Profiles in Shear-Driven Liquid Films: LDV Measurements,” 8th Int. Symposium on Applications of Laser Technique to Fluid Dynamics, 8–11, July, 1996, Lisbon, Portugal, Paper No. 25.2.
11.
Glahn, A., and Wittig, S., 1996, “Two-Phase Air/Oil Flow in Aeroengine Bearing Chambers—Assessment of an Analytical Prediction Method for the Internal Wall Heat Transfer.” 6th Int. Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC-6), Honolulu, Hawaii.
12.
Deissler
,
R. G.
,
1954
, “
Heat Transfer and Fluid Friction for Fully Developed Turbulent Flow of Air and Supercritical Water with Variable Fluid Properties
,”
Trans. ASME
,
76
, pp.
73
85
.
13.
Dukler
,
A. E.
,
1960
, “
Fluid Mechanics and Heat Transfer in Vertical Falling-Film Systems
,”
Chem. Eng. Prog., Symp. Ser.
,
56
, pp.
1
10
.
14.
Reid, R. C., Prausnitz, J. M., and Polling, B. E., 1988, The Properties of Gases and Liquids, 4th international edition, McGraw-Hill, New York.
15.
VDI-Wa¨rmeatlas, 1997, Berechnungsbla¨tter fu¨r den Wa¨rmeu¨bergang, Springer, Berlin.
16.
Margules
,
M.
,
1895
,
S.-B. Akad. Wiss. Wien, math.-naturwiss. K1. II.
,
104
, pp.
1234
1234
(see also 24).
17.
Kirschbaum, E., and Gerstner, F., 1939, Z. VDI Beiheft Verfahrenstechnik 10, VDI-Verlag.
18.
Kreitling, W., 1892, “Die Ausdehnung des Wassers, des absoluten Alkohols und der Mischungen beider,” Dissertation, Universita¨t Erlangen, Germany.
19.
Teja
,
A. S.
, and
Rice
,
P.
,
1981
, “
Generalized Corresponding States Method for the Viscosities of Liquid Mixtures
,”
Ind. Eng. Chem. Fundam.
,
20
, pp.
77
81
.
20.
Kay
,
R. L.
, and
Broadwater
,
T. L.
,
1976
, “
Solvent Structure in AqueousMixtures: III. Ionic Conductances in Ethanol-Water Mixtures at 10 and 25°C
,”
J. Solution Chem.
,
5
, pp.
57
76
.
21.
Li
,
C. C.
,
1976
, “
Thermal Conductivity of Liquid Mixtures
,”
AIChE J.
,
22
, pp.
927
930
.
22.
Cussler, E. L., 1976, Multicomponent Diffusion, Elsevier Scientific, Oxford.
23.
Himmelsbach, J., 1992, “Zweiphasenstro¨mungen mit schubspannungsgetriebenen welligen Flu¨ssigkeitsfilmen in turbulenter Heißlufstro¨mung—Meßtechnische Erfassung und numerische Beschreibung,” Dissertation, Universita¨t Karlsruhe, Germany.
24.
Gmehling, J., Onken, U., and Arlt, W., 1981, “Vapor-Liquid Equilibrium Data Collection, Aqueous-Organic Systems,” DECHEMA Chemistry Data Series, Vol. 1, Part 1a, DECHEMA, Frankfurt/Main.
You do not currently have access to this content.