Concerns about climate change have encouraged significant interest in concepts for ultralow or “zero”-emissions power generation systems. In a concept proposed by Clean Energy Systems, Inc., nitrogen is removed from the combustion air and replaced with steam diluent. In this way, formation of nitrogen oxides is prevented, and the exhaust stream can be separated into concentrated CO2 and water streams. The concentrated CO2 stream could then serve as input to a CO2 sequestration process. In this study, experimental data are reported from a full-scale combustion test using steam as the diluent in oxy-fuel combustion. This combustor represents the “reheat” combustion system in a steam cycle that uses a high and low-pressure steam expansion. The reheat combustor serves to raise the temperature of the low-pressure steam turbine inlet, similar to the reheat stage of a conventional steam power cycle. Unlike a conventional steam cycle, the reheat enthalpy is actually generated by oxy-fuel combustion in the steam flow. This paper reports on the unique design aspects of this combustor, as well as initial emissions and operating performance.

1.
Coal and Power Systems Strategic and Multi-Year Program Plans
, U.S. Dept. of Energy,
National Energy Technology Laboratory
, 2001, www.netl.doe.gov/coal/refshelf/for coal web mypp̱2001̱all.pdfwww.netl.doe.gov/coal/refshelf/for coal web mypp̱2001̱all.pdf.
2.
Bilger
,
R. W.
, 1999, “
Zero Release Combustion Technologies and the Oxygen Economy
,”
The Fifth International Conference on Technologies and Combustion for a Clean Environment
,
Lisbon
, Portugal, 12–15 July, 1999.
3.
Anderson
,
R. E.
,
Brandt
,
H.
,
Doyle
,
S. E.
,
Mueggenburg
,
H.
,
Taylor
,
J.
, and
Viteri
,
F.
, 2000, “
A Unique Process for Production of Environmentally Clean Electric Power Using Fossil Fuels
,”
8th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, March 28,
Honolulu
, Hawaii.
4.
Anderson
,
R.
,
Brandt
,
H.
,
Mueggenburg
,
H.
,
Taylor
,
J.
, and
Viteri
,
F.
, 1998, “
A Power Plant Concept Which Minimizes the Cost of Carbon Dioxide Sequestration and Eliminates the Emission of Atmospheric Pollutants
,”
4th International Conference On Greenhouse Gas Control Technologies
, August 30–September 2,
Interlaken
, Switzerland.
5.
Staicovici
,
M. D.
, 2002, “
Further Research Zero CO2 Emission Power Production: The COOLENERG Process
,”
Energy
0360-5442,
27
, pp.
831
844
.
6.
Mathieu
,
P.
, and
Nihart
,
R.
, 1999, “
Zero-Emission MATIANT Cycle
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
121
, pp.
116
120
.
7.
Bannister
,
R. L.
,
Newby
,
R. A.
, and
Yang
,
W. C.
, 1998, “
Development of a Hydrogen-Fueled Combustion Turbine Cycle for Power Generation
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
120
, pp.
276
283
.
8.
Balachandran
,
U.
,
Ma
,
B.
,
Maiya
,
P. S.
,
Mieville
,
R. L.
,
Dusek
,
J. T.
,
Picciolo
,
J. J.
,
Guan
,
J.
,
Dorris
,
S. E.
, and
Liu
,
M.
, 1998, “
Development Of Mixed-Conducting Oxides For Gas Separation
,”
Solid State Ionics
0167-2738,
108
, pp.
363
370
.
9.
Prasad
,
R.
,
Chen
,
J.
,
van Hassel
,
B.
,
Sirman
,
J.
,
White
,
J.
,
Apte
,
P.
,
Aaron
,
T.
, and
Shreiber
,
E.
, 2002, “
Advances in OTM Technology for IGCC
,”
19th Annual Pittsburgh Coal Conference
,
Pittsburgh
, PA, 23–27 September 2002.
10.
Dyer
,
P. N.
,
Richards
,
R. E.
,
Russek
,
S. L.
, and
Taylor
,
D. M.
, 2000, “
Ion Transport Membrane Technology For Oxygen Separation And Syngas Production
,”
Solid State Ionics
0167-2738,
134
, pp.
21
33
.
11.
Lewis
,
R. E.
,
Casleton
,
K. H.
,
Richards
,
G. A.
,
Straub
,
D. L.
, and
Rogers
,
W. A.
, 2001, “
A Comparison of Turbine Combustion Concepts Suitable for Integration with CO2 Sequestration
,”
2001 Joint International Combustion Symposium
,
Kauai
, HI, 10–12 September 2001.
12.
Lefebvre
,
A. H.
, 1999,
Gas Turbine Combustion
, 2nd ed.,
Taylor and Francis
, Philadelphia.
13.
Richards
,
G. A.
, and
Janus
,
M. C.
, 1998, “
Characterization of Oscillations During Premix Gas Turbine Combustion
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
120
(
2
), pp.
294
302
.
14.
Straub
,
D. L.
, and
Richards
,
G. A.
, 1998, “
Effect of Fuel Nozzle Configuration on Premix Combustion Dynamics
,” ASME 98-GT-492.
15.
Mahan
,
J. R.
, and
Karchmer
,
A.
, 1991, “
Combustion Core Noise
,”
Aeroacoustics of Flight Vehicles: Theory and Practice, Volume 1: Noise Sources
,
NASA Langley Research Center
, Available from AIAA Technical Library.
16.
Kee
,
R. J.
,
Rupley
,
F. M.
, and
Miller
,
J. A.
, 1989, Chemkin-II: A FORTRAN Chemical Kinetics Package for the Analysis of Gas-phase Chemical Kinetics, Sandia National Laboratories Report No. SAND89-8009.
17.
Votta
,
F.
, 1964, “
Simplified Design Method for Condensers of Vapor-Gas Mixtures
,”
Chem. Eng. (Rugby, U.K.)
0302-0797,
71
, pp.
223
228
.
18.
Perry
,
R. H.
, and
Chilton
,
C. H.
, eds., 1973,
Chemical Engineers Handbook
, 5th ed.,
McGraw–Hill
, New York, pp.
14.2
14.3
.
19.
Dean
,
J. A.
, ed., 1985,
Lange’s Handbook of Chemistry
, 13th ed.,
McGraw–Hill
, New York, pp.
10.3
10.5
.
You do not currently have access to this content.