Abstract

Droplet vaporization models that are currently employed in simulating sprays are based on a quasisteady, low-pressure formulation. These models do not adequately represent many high-pressure effects, such as nonideal gas behavior, solubility of gases into liquid, pressure dependence of gas- and liquid-phase thermophysical properties, and transient liquid transport in the droplet interior. In the present study, a high-pressure quasisteady droplet vaporization model is developed for use in comprehensive spray simulations for which more rigorous vaporization models, such as those based on unsteady formulations, are beyond the present computational capabilities. Except for the gas-phase quasisteady assumption that is retained in the model, the model incorporates all high-pressure effects. The applicability of the model for predicting droplet vaporization in diesel and gas turbine combustion environments is evaluated by comparing its predictions with the available experimental data and with those from a more comprehensive transient model. Results indicate a fairly good agreement between the quasisteady (QS) and transient (TS) models for a wide range of pressures at low ambient temperatures, and for pressure up to the fuel critical pressure at high ambient temperatures. The QS model generally underpredicts the vaporization rate during the earlier part of droplet lifetime and overpredicts during the later part of lifetime compared to those using the TS model, and the difference becomes increasingly more significant at higher ambient pressure and temperature. The differences can be attributed to the quasisteady gas-phase average temperature and composition assumption for the QS model that reduces and increases the gas-phase heat and mass fluxes at the droplet surface during the earlier and later part of lifetime, respectively. The applicability of the QS model is quantified in terms of the maximum pressure as a function of ambient temperature.

References

1.
Godsave
,
G. A. E.
, 1953, “
Studies of the Combustion of Drops in a Fuel Spray—The Burning of Single Drops of Fuel
,”
Fourth Symposium (International) on Combustion
,
Williams and Wilkins
, Baltimore, pp.
818
830
.
2.
Spalding
,
D. B.
, 1953, “
The Combustion of Liquid Fuels
,”
Fourth Symposium (International) on Combustion
,
Williams and Wilkins
, Baltimore, pp.
847
864
.
3.
Williams
,
A.
, 1973, “
Combustion of Droplet of Liquid Fuels: A Review
,”
Combust. Flame
0010-2180,
21
, pp.
1
31
.
4.
Law
,
C. K.
, 1982, “
Recent Advances in Droplet Vaporization and Combustion
,”
Prog. Energy Combust. Sci.
0360-1285,
8
, pp.
171
201
.
5.
Sirignano
,
W. A.
, 1983, “
Fuel Droplet Vaporization and Spray Combustion
,”
Prog. Energy Combust. Sci.
0360-1285,
9
, pp.
291
322
.
6.
Peng
,
F.
and
Aggarwal
,
S. K.
, 1995, “
A Review of Droplet Dynamics and Vaporization Modeling for Engineering Calculations
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
117
, pp.
453
461
.
7.
Sirignano
,
W. A.
, 1979, “
Theory of Multicomponent Fuel Droplet Vaporization
,”
Archives of Thermodynamics and Combustion
,
9
, pp.
231
251
.
8.
Aggarwal
,
S. K.
,
Tong
,
A.
, and
Sirignano
,
W. A.
, 1984, “
A Comparison of Vaporization Models in Spray Calculations
,”
AIAA J.
0001-1452,
22
, pp.
1448
1457
.
9.
Abramzon
,
B.
and
Sirignano
,
W. A.
, 1989, “
Droplet Vaporization Model for Spray Combustion Calculations
,”
Int. J. Heat Mass Transfer
0017-9310,
32
, pp.
1605
1618
.
10.
Faeth
,
G. M.
, 1983, “
Evaporation and Combustion of Sprays
,”
Prog. Energy Combust. Sci.
0360-1285,
9
, pp.
1
76.
11.
Aggarwal
,
S. K.
, 1987, “
Modeling of Multicomponent Fuel Spray Vaporization
,”
Int. J. Heat Mass Transfer
0017-9310,
30
, pp.
1949
1961
.
12.
Aggarwal
,
S. K.
,
Shu
,
Z.
,
Mongia
H.
and
Hura
,
H. S.
, 1998, “
Multicomponent Fuel Effects on the Vaporization of a Surrogate Single-Component Fuel Droplet
,” ASME Paper No. 98-0157.
13.
Matlosz
,
R. L.
,
Leipziger
,
S.
, and
Torda
,
T. P.
, 1972, “
Investigation of Liquid Drop Evaporation in a High Temperature and High Pressure Environment
,”
Int. J. Heat Mass Transfer
0017-9310,
15
, pp.
831
852
.
14.
Hsieh
,
K. C.
,
Shuen
,
J. S.
, and
Yang
,
V.
, 1991, “
Droplet Vaporization in High-Pressure Environment, I: Near-Critical Conditions
,”
Combust. Sci. Technol.
0010-2202,
76
, pp.
111
132
.
15.
Curtis
,
E. W.
and
Farrell
,
P. V.
, 1992, “
A Numerical Study of High-Pressure Droplet Vaporization
,”
Combust. Flame
0010-2180,
90
, pp.
85
102
.
16.
Shuen
,
J. S.
,
Yang
,
V.
, and
Hsiao
,
C. C.
, 1992, “
Combustion of Liquid-Fuel Droplets in Supercritical Conditions
,”
Combust. Flame
0010-2180,
89
, pp.
299
319
.
17.
Jia
,
H.
and
Gogos
,
G.
, 1993, “
High Pressure Droplet Vaporization; Effects of Liquid-Phase Gas Solubility
,”
Int. J. Heat Mass Transfer
0017-9310,
36
, pp.
4419
4431
.
18.
Yang
,
V.
,
Lin
,
N. N.
, and
Shuen
,
J. S.
, 1994, “
Vaporization of Liquid Oxygen (LOX) Droplets in Supercritical Hydrogen Environments
,”
Combust. Sci. Technol.
0010-2202,
97
, pp.
247
270
.
19.
Givler
,
S. D.
and
Abraham
,
J.
, 1996, “
Supercritical Droplet Vaporization and Combustion Studies
,”
Prog. Energy Combust. Sci.
0360-1285,
22
, pp.
1
28
.
20.
Curtis
,
E. W.
,
Ulodogan
,
A.
and
Reitz
,
R. D.
, 1995, “
A New High Pressure Droplet Vaporization Model for Diesel Engine Modeling
,” SAE Paper No. 952431.
21.
Abraham
,
J.
and
Givler
,
S. D.
, 1999, “
Conditions in Which Fuel Drops Reach a Critical State in a Diesel Engine
,” SAE Paper No. 1999-01-0511.
22.
Sirignano
,
W. A.
and
Delplanque
,
J.-P.
, 1999, “
Transcritical Vaporization of Liquid Fuels and Propellants
,”
AIAA J.
0001-1452,
15
, pp.
896
902
.
23.
Yang
,
V.
, 2000, “
Modeling of Supercritical Vaporization, Mixing, and Combustion Processes in Liquid-Fueled Propulsion System
,”
Proc. of the Combustion Institute
, Vol.
28
, pp.
925
942
.
24.
Sirignano
,
W. A.
, 1999,
Fluid Dynamics and Transport of Droplets and Sprays
,
Cambridge University Press
, Cambridge, UK.
25.
Aggarwal
,
S. K.
, and
Mongia
,
H.
,
2002, “
Multicomponent and High-Pressure Effects on Droplet Vaporization
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
124
, pp.
248
257
.
26.
Zhu
,
G.
and
Aggarwal
,
S. K.
, 2000, “
Transient Supercritical Droplet Evaporation with Emphasis on the Effects of Equation of State
,”
Int. J. Heat Mass Transfer
0017-9310
43
, pp.
1157
1171
.
27.
Reid
,
R. C.
,
Prausnitz
,
J. M.
, and
Poling
,
B. E.
, 1987,
The Properties of Gases and Liquids
,
McGraw-Hill
, New York.
28.
Knapp
,
H.
,
Doring
,
R.
,
Oellrich
,
L.
,
Plocker
,
U.
and
Prausnitz
,
J. M.
, 1982,
Vapor-Liquid Equilibria for Mixture of Low Boiling Substances, Chemical Engineering Data Series
, Vol.
VI
,
Dechema
, Frankfurt.
29.
Filippov
,
L. P.
, 1955,“
Thermal Conduction of Solutions in Associated Liquids: Thermal Conduction of 50 Organic Liquids
,”
Chem. Abstr.
0009-2258
49
, Col.
15430
15431
;
Filippov
,
L. P.
,
Chem. Abstr.
0009-2258 1956,
50
, Col.
8276
.
30.
Baroncini
,
C.
,
Di Filippo
,
P.
, and
Latini
,
G.
, 1983, “
Comparison Between Predicted and Experimental Thermal Conductivity Values for the Liquid Substances and the Liquid Mixtures at Different Temperatures and Pressures
,” paper presented at the Workshop on Thermal Conductivity Measurement, IMEKO, Budapest.
31.
Chung
,
T. H.
,
Ajlan
,
M.
,
Lee
,
L. L.
, and
Starling
,
K. E.
, 1988, “
Generalized Multiparameter Correlation for Nonpolar and Polar Fluid Transport Properties
,”
Ind. Eng. Chem. Res.
0888-5885
27
, pp.
671
679
.
32.
Chung
,
T. H.
,
Lee
,
L. L.
, and
Starling
,
K. E.
, 1984, “
Applications of Kinetic Gas Theories and Multiparameter Correlation for Prediction of Dilute Gas Viscosity and Thermal Conductivity
,”
Ind. Eng. Chem. Fundam.
0196-4313,
23
, pp.
8
13
.
33.
Takahashi
,
S.
, 1974, “
Preparation of a Generalized Chart for the Diffusion Coefficients of Gases at High Pressures
,”
J. Chem. Eng. Jpn.
0021-9592,
6
, pp.
417
420
.
34.
Vargaftik
,
N. B.
, 1983,
Handbook of Physical Properties of Liquids and Gases, Pure Substances and Mixtures
, 2nd ed.,
Hemisphere
, New York.
35.
Nomura
,
H.
,
Ujiie
,
Y.
,
Rath
,
H. J.
,
Sato
,
J.
, and
Kono
,
M.
, 1996, “
Experimental Study of High-Pressure Droplet Evaporation Using Microgravity Conditions
,”
Twenty-Sixth Symposium (International) on Combustion
,
The Combustion Institute
, pp.
1267
1273
.
36.
Zhu
,
G. S.
,
Reitz
,
R. D.
, and
Aggarwal
,
S. K.
, 2001, “
Gas-phase Unsteadiness and Its Influence on Droplet Vaporization in Sub- and Super-critical Environments
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
3081
3093
.
37.
Zhu
,
G.-S.
, and
Reitz
,
R. D.
, 2001, “
Engine Fuel Droplet High-Pressure Vaporization Modeling
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
123
(
2
), pp.
412
418
.
You do not currently have access to this content.