A sensitivity analysis of NOx formation in pilot-ignited natural gas dual fuel engines is performed based on a phenomenological combustion model. The NOx formation mechanism employed in this study incorporates a super-extended Zel’dovich mechanism (up to 43 reactions). The sensitivity analysis compares the contribution of each major reaction to NOx formation, and identifies the rate-controlling NOx formation reactions in different high-temperature regions—the burning pilot spray, the premixed flame associated with the gaseous fuel-air mixture, and the burned combustion products. The formation rates for reactions involving NOx are also investigated to reveal the primary NOx formation paths. Results show two main NOx formation paths both in the pilot spray (also called the packets zone) and the burned zone. The rate-limiting reactions for the packets zone are O+N2=NO+N and N2+HO2=NO+HNO. Rate-limiting reactions for the burned zone are N2O+M=N2+O+M and N2+HO2=NO+HNO. Since the aforementioned reactions significantly influence the net NOx prediction, it is important that the corresponding reaction rates be determined accurately. Finally, because the quasi-steady-state assumption is commonly used for certain species in NOx modeling, a transient relative error is estimated to evaluate the validity of the assumption. The relative error in NOx prediction with and without the use of the steady-state assumption is small, of the order of 2%. This work also confirms that sensitivity analysis can provide valuable insight into the possible NOx formation pathways in engines and improve the ability of current prediction tools to obtain more reliable predictions.

1.
Krishnan
,
S. R.
,
Srinivasan
,
K. K.
,
Singh
,
S.
,
Bell
,
S. R.
,
Midkiff
,
K. C.
,
Gong
,
W.
,
Fiveland
,
S.
, and
Willi
,
M.
, 2004, “
Strategies of for Reduced NOx Emissions in Pilot-Ignited Natural Gas Engines
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
(
3
), pp.
665
671
.
2.
Srinivasan
,
K. K.
,
Krishnan
,
S. R.
,
Sing
,
S.
,
Midkiff
,
K. C.
,
Bell
,
S. R.
,
,
W.
,
Fiveland
,
S.
, and
Willi
,
M.
, 2003, “
The Advanced Low Pilot Ignited Natural Gas Engine – A Low NOx Alternative to The Diesel Engine
,” ASME Paper No. IJPGC2003-40098.
3.
Singh
,
S.
,
Krishnan
,
S. R.
,
Srinivasan
,
K. K.
,
Midkiff
,
K. C.
, and
Bell
,
S. R.
, 2004, “
Effect of Pilot Injection Timing, Pilot Quantity and Intake Charge Conditions on Performance and Emissions for An Advanced Low-Pilot-Ignited Natural Gas Engine
,”
Int. J. Eng. Res.
,
5
(
4
), pp.
329
348
.
4.
Tomita
,
E.
,
Kawahara
,
N.
,
Piao
,
Z.
, and
Yamaguchi
,
R.
, 2002, “
Effect of EGR and Early Injection of Diesel Fuel on Combustion Characteristics and Exhaust Emissions in a Methane Dual Fuel Engine
,” SAE Paper No. 2002-01-2723.
5.
Dodge
,
L. G.
,
Kubesh
,
J. T.
,
Naegeli
,
D. W.
, and
Cambell
,
P. F.
, 1998, “
Modeling NOx Emissions from Lean-Burn Natural Gas Engines
,” SAE Paper No. 981389.
6.
Hampson
,
G. J.
,
Xin
,
J.
,
Liu
,
Y.
,
Han
,
Z.
, and
Reitz
,
R. D.
, 1996, “
Modeling of NOx Emissions with Comparison to Exhaust Measurement for a Gas Fuel Converted Heavy-Duty Diesel Engine
,” SAE Paper No. 961967.
7.
Wang
,
G.
,
Li
,
G.
,
Liu
,
Y.
,
Chen
,
L.
,
Zhang
,
X.
, and
Lu
,
J.
, 1999, “
A Developed Model for Emissions Prediction of a DI Diesel Engine
,” SAE Paper No. 1999-01-0233.
8.
Pirouzpanah
,
V.
, and
Kashani
,
B. O.
, 1999, “
Prediction of Major Pollutants Emission in Direct-Injection Duel Fuel Diesel and Natural Gas Engines
,” SAE Paper No. 1999-01-0841.
9.
Bowman
,
C. T.
, 1975, “
Kinetics of Pollutant Formation and Destruction in Combustion
,”
Prog. Energy Combust. Sci.
0360-1285,
1
, pp.
33
45
.
10.
Tomeczek
,
J.
, and
Gradon
,
B.
, 1997, “
The Role of Nitrous Oxide in the Mechanism of Thermal Nitric Oxide Formation Within the Flame Temperature Range
,”
Combust. Sci. Technol.
0010-2202,
125
, pp.
159
180
.
11.
Malte
,
P. C.
, and
Pratt
,
D. T.
, 1975, “
Measurement of Atomic Oxygen and Nitrogen Oxides in Jet Stirred Combustion Engines
,”
Fifteenth Symposium (International) on Combustion
, The Combustion Institute, Pittsburgh, pp.
543
55
.
12.
Mellor
,
A. M.
, 1998, “
Skeletal Mechanism for NOx Chemistry in Diesel Engines
,” SAE Paper No. 981450.
13.
Turányi
,
T.
, 1990, “
Sensitivity Analysis of Complex Kinetics Systems: Tools and Applications
,”
J. Math. Chem.
0259-9791,
5
, pp.
203
248
.
14.
Olsson
,
J. O.
, and
Andersson
,
L. L.
, 1987, “
Sensitivity Analysis Based on an Efficient Brute-Force Method, Applied to an Experimental CH4∕O2 Premixed Laminar Flame
,”
Combust. Flame
0010-2180,
67
, pp.
99
109
.
15.
Dunker
,
A. M.
, 1984, “
The Decoupled Direct Method for Calculating Sensitivity Coefficients in Chemical Kinetics
,”
J. Chem. Phys.
0021-9606,
81
(
5
), pp.
2385
2393
.
16.
Hwang
,
J. T.
,
Dougherty
,
E. P.
,
Rabitz
,
S.
, and
Rabitz
,
H.
, 1978, “
The Green’s Function Method of Sensitivity Analysis in Chemical Kinetics
,”
J. Chem. Phys.
0021-9606,
69
(
11
), pp.
5180
5191
.
17.
Hwang
,
J. T.
, 1983, “
Sensitivity Analysis in Chemical Kinetics by the Method of Polynomial Approximations
,”
Int. J. Chem. Kinet.
0538-8066,
15
, pp.
959
987
.
18.
Krishnan
,
S. R.
, 2005, “
Experimental Investigations and Phenomenological Simulation of Combustion in a Low Pilot-Ignited Natural Gas Engine With a Focus on Advanced Injection Timings
,” Ph.D. dissertation, The University of Alabama, Tuscaloosa, AL.
19.
Miller
,
J. A.
, and
Bowman
,
C. T.
, 1989, “
Mechanism and Modeling of Nitrogen Chemistry in Combustion
,”
Prog. Energy Combust. Sci.
0360-1285,
15
, pp.
287
338
.
20.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M. C.
,
Bowman
,
T.
,
Hanson
,
R.
,
Song
,
S.
,
Gardiner
,
W. C.
, Jr.
,
Lissianski
,
V.
, and
Qin
,
Z.
, http://www.me.berkeley.edu/grimechhttp://www.me.berkeley.edu/grimech.
21.
Glaborg
,
P.
,
Alzueta
,
M. U.
,
Dam-Johansen
,
K.
, and
Miller
,
J. A.
, 1998, “
Kinetic Modeling of Hydrocarbon/Nitric Oxide Interactions in a Flow Reactor
,”
Combust. Flame
0010-2180,
115
(
1
),
1
27
.
22.
Coda Zabetta
,
E.
,
Kilpinen
,
P.
,
Hupa
,
M.
,
Ståhl
,
K.
,
Leppälahti
,
J.
,
Cannon
,
M.
, and
Nieminen
,
J.
, 2000, “
Kinetics Modeling Study on the Potential of Staged Combustion in Gas Turbines for the Reduction of Nitrogen Oxide Emission from Biomass IGCC Plants
,”
Energy Fuels
0887-0624,
14
, pp.
751
761
.
23.
Lutz
,
A. E.
,
Kee
,
R. J.
, and
Miller
,
J. A.
, 1986, “
Senkin: A Fortran Program for Predicting Homogeneous Gas Phase Chemical Kinetics with Sensitivity Analysis
,” Sandia National Laboratories Report No. SAND86-8209.
24.
Miller
,
R.
,
Davis
,
G.
,
Lavoie
,
G.
,
Newman
,
C.
, and
Gardner
,
T.
, 1998, “
A Super-Extended Zel’dovich Mechanism for NOx modeling and Engine Calibration
,” SAE Paper No. 980781.
25.
Tabaczynski
,
R. J.
,
Ferguson
,
C. R.
, and
Radhakrishnan
,
K.
, 1977, “
A Turbulent Entrainment Model for Spark Ignition Engine Combustion
,”
Trans. SAE
,
86
, pp.
2414
2433
.
26.
Miller
,
R.
,
Russ
,
S.
,
Weaver
,
C.
,
Kaiser
,
E.
,
Newman
,
C.
,
Davis
,
G.
, and
Lavoie
,
G.
, 1998, “
Comparison of Analytically and Experimentally Obtained Residual Fractions and NOx Emissions in Spark-Ignited Engines
,” SAE Paper No. 982562.
27.
Yang
,
H.
,
Krishnan
,
S. R.
,
Srinivasan
,
K. K.
, and
Midkiff
,
K. C.
, 2003, “
Modeling of NOx Emissions Using a Super-Extended Zel’dovich Mechanism
,” ASME Paper No. ICEF2003-713.
28.
Gordon
,
S.
, and
McBride
,
B. J.
, 1976, “
Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks and Chapman-Jouguet Detonations
,” NASA Report No. SP-273.
29.
Li
,
S.
, and
Petzold
,
L.
, “
Design of New DASPK for Sensitivity Analysis
,” 1999, http://www.engineering.ucsb.edu/∼csehttp://www.engineering.ucsb.edu/∼cse.
30.
Bischof
,
C.
,
Carle
,
A.
,
Hovland
,
P.
,
Khademi
,
P.
, and
Mauer
,
A.
, 1998, “
ADIFOR 2.0 Users’ Guide
,” Technical Report CRPC-95516-S, http://www-unix.mcs.anl.gov/autodiff/ADIFORhttp://www-unix.mcs.anl.gov/autodiff/ADIFOR.
31.
Wang
,
W.
, and
Rogg
,
B.
, “
Premixed Ethylene/Air and Ethane/Air Flames: Reduced Mechanisms Based on Inner Iteration
,”
Reduced Kinetic Mechanisms for Application in Combustion Systems
,
Springer
, Berlin, pp.
75
101
.
32.
Bahn
,
G. S.
, 1968,
Reaction Rate Compilation for the H-O-N System
,
Gordon and Breach
, New York.
33.
Lange
,
H. B.
, Jr.
, 1972, “
NOx Formation in Premixed Combustion: a Kinetic Model and Experimental Data
,”
Air Pollution and Control
(AIChE Symposium Series 126), pp.
17
24
.
34.
Zabetta
,
E. C.
, and
Kilpinen
,
P.
, 2001, “
Improved NOx Submodel for In-Cylinder CFD Simulation of Low- and Medium-Speed Compression Ignition Engines
,”
Energy Fuels
0887-0624,
15
, pp.
1425
1433
.
You do not currently have access to this content.