This paper addresses the impact of fuel composition on the operability of lean premixed gas turbine combustors. This is an issue of current importance due to variability in the composition of natural gas fuel supplies and interest in the use of syngas fuels. This paper reviews available results and current understanding of the effects of fuel composition on combustor blowout, flashback, dynamic stability, and autoignition. It summarizes the underlying processes that must be considered when evaluating how a given combustor’s operability will be affected as fuel composition is varied.
Issue Section:
Gas Turbines: Combustion, Fuels, and Emissions
1.
Richards
, G. A.
, McMillian
, M. M.
, Gemmen
, R. S.
, Rogers
, W. A.
, and Cully
, S. R.
, 2001, “Issues for Low-Emission, Fuel-Flexible Power System
,” Prog. Energy Combust. Sci.
0360-1285, 27
, pp. 141
–169
.2.
Flores
, R. M.
, McDonell
, V. G.
, and Samuelsen
, G. S.
, 2003, “Impact Of Ethane & Propane Variation In Natural Gas On The Performance Of A Model Gas Turbine Combustor
,” ASME J. Eng. Gas Turbines Power
0742-4795, 125
(3
), pp. 701
–708
.3.
Klimstra
, Jacob
, 1986, “Interchangeability of Gaseous Fuels—The Importance of the Wobbe Index
,” SAE Paper No. 861578.4.
Moliere
, M.
, 2002, “Benefiting from the Wide Fuel Capability of Gas Turbines: A Review of Application Opportunities
,” ASME Paper No. GT-2002-30017.5.
King
, S.
, 1992, “The Impact of Natural Gas Composition on Fuel Metering and Engine Operating Characteristics
,” SAE, Paper No. 920593.6.
Tillman
, D. A.
, and Harding
, N. S.
, 2004, Fuels of Opportunity: Characteristics and Uses in Combustion Systems
, Elsevier
, New York
, pp. 273
–287
.7.
Durbin
, M.
, and Ballal
, D.
, 1996, “Studies of Lean Blowout in a Step Swirl Combustor
,” ASME J. Eng. Gas Turbines Power
0742-4795, 118
.8.
Barlow
, R. S.
, Fiechtner
, G. J.
, Carter
, C. D.
, and Chen
, J. Y.
, 2000, “Experiments on the Scalar Structure of Turbulent CO∕H2∕N2 Jet Flames
,” Combust. Flame
0010-2180, 120
, pp. 549
–569
.9.
Correa
, S. M.
, and Gulati
, A.
, 1998, “Non-Premixed Turbulent CO∕H2 Flames at Local Extinction Conditions
,” Proc. Combust. Inst.
1540-7489, 22
, pp. 599
–606
.10.
Drake
, M. C.
, 1986, “Stretched Laminar Flamelet Analysis of Turbulent H2 and CO∕H2∕N2 Diffusion Flames
,” Proc. Combust. Inst.
1540-7489, 21
, pp. 1579
–1589
.11.
Correa
, S. M.
, Gulati
, A.
, and Pope
, S. B.
, 1988, “Assessment of a Partial Equilibrium∕Monte Carlo Model for Turbulent Syngas Flames
,” Combust. Flame
0010-2180, 72
, pp. 159
–173
.12.
Masri
, A. R.
, and Dibble
, R. W.
, 1988, “Spontaneous Raman Measurements in Turbulent CO∕H2∕N2 Flames Near Extinction
,” Proc. Combust. Inst.
1540-7489, 22
, pp. 607
–618
.13.
Glassman
, I.
, 1996, Combustion
, Academic
, New York
.14.
Maloney
, D.
, 2002, “The Simulation Validation Project at NETL
,” DOE Report.15.
Schefer
, R. W.
, 2003, “Hydrogen Enrichment for Improved Lean Flame Stability
,” Int. J. Hydrogen Energy
0360-3199, 28
, pp. 1131
–1141
.16.
Wicksall
, D.
, and Agrawal
, A.
, 2001, “Effects of Fuel Composition on Flammability Limit of a Lean, Premixed Combustor
,” ASME Paper No. 2001-GT-0007.17.
Yoshimura
, T.
, McDonell
, V. G.
, and Samuelsen
, G. S.
, 2005, “Evaluation of Hydrogen Addition to Natural Gas on the Stability and Emissions Behavior of a Model Gas Turbine Combustor
,” ASME Paper No. GT2005-68785.18.
Sankaran
, Ramanan
, Im
, and Hong
, G.
, 2002, “Dynamic Flammability Limits of Methane∕Air Premixed Flames With Mixture Composition Fluctuations
,” Proc. Combust. Inst.
1540-7489, 29
, pp. 77
–84
.19.
Jackson
, G. S.
, Sai
, R.
, Plaia
, J. M.
, Boggs
, C. M.
, and Kiger
, K. T.
, 2003, “Influence of H2 on the Response of Lean Premixed CH4 Flames to High Strained Flows
,” Combust. Flame
0010-2180, 132
, pp. 503
–511
.20.
Vagelopoulos
, C. M.
, and Egolfopoulos
, F. N.
, 1994, “Laminar Flame Speeds and Extinction Strains Rates of Mixtures of Carbon Monoxide With Hydrogen, Methane, and Air
,” Proc. Combust. Inst.
1540-7489, 25
, pp. 1317
–1341
.21.
Natarajan
, J.
, Nandula
, S.
, Lieuwen
, T.
, and Seitzman
, J.
, 2005, “Laminar Flame Speeds of Synthetic Gas Fuel Mixtures
,” ASME Paper No. GT2005-68917.22.
Effinger
, M. W.
, Mauzey
, J. L.
, and McDonell
, V. G.
, “Characterization and Reduction of Pollutant Emissions From a Landfill and Digester Fired Microturbine Generator
,” ASME Paper No. GT2005-68520.23.
McDonell
, V. G.
, Effinger
, M. W.
, and Mauzey
, J. L.
, “Correlation of Landfill and Digester Gas Composition With Gas Turbine Pollutant Emissions
,” ASME Paper No. GT2006-90727.24.
Kee
, R. J.
, Rupley
, F. M.
, Miller
, J. A.
, Coltrin
, M. E.
, Grcar
, J. F.
, Meeks
, E.
, Moffat
, H. K.
, Lutz
, A. E.
, Dixon-Lewis
, G.
, Smooke
, M. D.
, Warnatz
, J.
, Evans
, G. H.
, Larson
, R. S.
, Mitchell
, R. E.
, Petzold
, L. R.
, Reynolds
, W. C.
, Caracotsios
, M.
, Stewart
, W. E.
, Glarborg
, P.
, Wang
, C.
, and Adigun
, O.
, 2000, CHEMKIN collection, Release 3.6, Reaction Design, Inc., San Diego, CA.25.
Kido
, H.
, Nakahara
, M.
, Nakashima
, K.
, and Hashimoto
, J.
, 2002, “Influence of Local Flame Displacement Velocity on Turbulent Burning Velocity
,” Proc. Combust. Inst.
1540-7489, 29
, pp. 1855
–1861
.26.
Kido
, H.
, Nakahara
, M.
, Hashimoto
, J.
, and Barat
, D.
, 2002, “Turbulent Burning Velocity of Two Component Fuel Mixtures of Methane, Propane and Hydrogen
,” Jpn. Soc. Mech. Eng. Int. J.
, 45
, pp. 355
–362
.27.
Hall
, J. M.
, Rickard
, M. J. A.
, and Petersen
, E. L.
, 2005, “Comparison of Characteristic Time Diagnostics for Ignition and Oxidation of Fuel∕Oxidizer Mixtures Behind Reflected Shock Waves
,” Combust. Sci. Technol.
0010-2202, 177
, pp. 455
–483
.28.
Spadaccini
, L. J.
, and Colket
, M. B.
III, 1994, “Ignition Delay Characteristics of Methane Fuels
,” Prog. Energy Combust. Sci.
0360-1285, 20
, pp. 431
–460
.29.
Petersen
, E. L.
, Röhrig
, M.
, Davidson
, D. F.
, Hanson
, R. K.
, and Bowman
, C. T.
, 1996, “High-Pressure Methane Oxidation Behind Reflected Shock Waves
,” Proc. Combust. Inst.
1540-7489, 26
, pp. 799
–806
.30.
Petersen
, E. L.
, Davidson
, D. F.
, and Hanson
, R. K.
, 1999, “Ignition Delay Times of Ram Accelerator CH4∕O2∕Diluent Mixtures
,” J. Propul. Power
0748-4658, 15
, pp. 82
–91
.31.
Huang
, J.
, Hill
, P. G.
, Bushe
, W. K.
, and Munshi
, S. R.
, 2004, “Shock-Tube Study of Methane Ignition Under Engine-Relevant Conditions: Experiments and Modeling
,” Combust. Flame
0010-2180, 136
, pp. 25
–42
.32.
Zhukov
, V. P.
, Sechenov
, V. A.
, and Starikovskii
, A. Yu.
, 2003, “Spontaneous Ignition of Methane-Air Mixtures in a Wide Range of Pressures
,” Combust., Explos. Shock Waves
0010-5082, 30
, pp. 487
–495
.33.
Petersen
, E. L.
, Hall
, J. M.
, Smith
, S. D.
, de Vries
, J.
, Amadio
, A.
, and Crofton
, M. W.
, 2005, “Ignition of Fuel-Lean Natural Gas Blends at Gas Turbine Pressures
,” ASME Turbo EXPO 2005
, Reno
, Jun., Paper No. GT2005-68517.34.
Hall
, J. M.
, and Petersen
, E. L.
, 2005, “Development of a Chemical Kinetics Mechanism for CH4∕H2∕Air Ignition at Elevated Pressures
,” AIAA Paper No. 2005-3768.35.
Smith
, G. P.
, Golden
, D. M.
, Frenklach
, M.
, Moriarty
, N. W.
, Eiteneer
, B.
, Goldenberg
, M.
, Bowman
, C. T.
, Hanson
, R. K.
, Song
, S.
, Gardiner
, W. C.
, Lissianski
, V. V.
, and Qin
, Z.
, GRI-MECH 3.0, http://www.me.berkeley.edu/gri-mech/http://www.me.berkeley.edu/gri-mech/.36.
Hunter
, T. B.
, Wang
, H.
, Litzinger
, T. A.
, and Frenklach
, M.
, 1994, “The Oxidation of Methane at Elevated Pressures: Experiments and Modeling
,” Combust. Flame
0010-2180, 97
, pp. 201
–224
.37.
Wang
, H.
, and Laskin
, A.
, 1999, “On Initiation Reactions of Acetylene Oxidation in Shock Tubes A Quantum Mechanical and Kinetic Modeling Study
,” Chem. Phys. Lett.
0009-2614, 303
, pp. 43
–49
.38.
Kalitan
, D. M.
, Petersen
, E. L.
, Mertens
, J. D.
, and Crofton
, M. W.
, 2005, “Ignition and Oxidation of Lean CO∕H2 Fuel Blends in Air
,” AIAA Paper No. 2005-3767.39.
Kalitan
, D. M.
, and Petersen
, E. L.
, 2006, “Ignition of Lean CO/H/Air Mixtures at Elevated Pressures—Part II
,” ASME Paper No. GT2006-90488.40.
Davis
, S. G.
, Joshi
, A. V.
, Wang
, H.
, and Egolfopoulos
, F.
, 2005, “An Optimized Kinetic Model of H2∕CO Combustion
,” Proc. Combust. Inst.
1540-7489, 30
, pp. 1283
–1292
.41.
Petersen
, E. L.
, Davidson
, D. F.
, and Hanson
, R. K.
, 1999, “Kinetics Modeling of Shock-Induced Ignition in Low-Dilution CH4∕O2 Mixtures at High Pressures and Intermediate Temperatures
,” Combust. Flame
0010-2180, 117
, pp. 272
–290
.42.
Skinner
, G. B.
, and Ringrose
, G. H.
, 1965, “Ignition Delays of a Hydrogen-Oxygen-Argon Mixture at Relatively Low Temperatures
,” J. Chem. Phys.
0021-9606, 42
, pp. 2190
–2192
.43.
Zukoski
, E. E.
, 1997, “Afterburners
,” in Aerothermodynamics of Gas Turbine and Rocket Propulsion
, G.
Oates
, ed., Dover
, New York
.44.
Spaulding
, D.
, 1955, Some Fundamentals of Combustion
, Butterworth
, London
, Chap. 5.45.
Longwell
, J.
, Frost
, E.
, Weiss
, M.
, 1953, “Flame Stability in Bluff-Body Recirculation Zones
,” Ind. Eng. Chem.
0019-7866, 45
(8
), pp. 1629
–1633
.46.
Putnam
, A. A.
, and Jensen
, R. A.
, 1949, “Appplication of Dimensionless Numbers to Flash-back and Other Combustion Phenomena
,” Proc. Combust. Inst.
1540-7489, 125
, pp. 89
–98
.47.
Plee
, S. L.
, and Mellor
, A. M.
, 1979, “Characteristic Time Correlation for Lean Blowoff of Bluff Body Stabilized Flames
,” Combust. Flame
0010-2180, 35
, pp. 61
–80
.48.
Radhakrishnan
, K.
, Heywood
, J.
, and Tabaczynski
, R.
, 1981, “Premixed Turbulent Flame Blowoff Velocity Correlation Based on Coherent Structures in Turbulent Flows
,” Combust. Flame
0010-2180, 42
, pp. 19
–33
.49.
Noble
, D.
, Zhang
, Q.
, Shareef
, A.
, Tootle
, J.
, Meyers
, A.
, and Lieuwen
, T.
, 2006, “Syngas Mixture Composition Effects Upon Flashback and Blowout
,” ASME Paper No. 2006-90470.50.
Kroner
, M.
, Fritz
, J.
, and Sattelmayer
, T.
, 2002, “Flashback Limits for Combustion Induced Vortex Breakdown in a Swirl Burner
,” ASME Paper No. GT-2002-30075.51.
Umemura
, A.
, and Tomita
, K.
, 2001, “Rapid Flame Propagation in a Vortex Tube in Perspective of Vortex Breakdown Phenomenon
,” Combust. Flame
0010-2180, 125
, pp. 820
–838
.52.
Brown
, G.
, and Lopez
, J.
, 1990, “Axisymmetric Vortex Breakdown Part 2: Physical Mechanisms
,” J. Fluid Mech.
0022-1120, 221
, pp. 553
–576
.53.
Lieuwen
, T.
, Torres
, H.
, Johnson
, C.
, and Zinn
, B. T.
, 2001, “A Mechanism for Combustion Instabilities in Premixed Gas Turbine Combustors
,” ASME J. Eng. Gas Turbines Power
0742-4795, 123
(1
), pp. 182
–190
.54.
Gonzalez-Juez
, E.
, Lee
, J. G.
, and Santavicca
, D. A.
, “A Study of Combustion Instabilities Driven by Flame-Vortex Interactions
,” AIAA Paper No. 2005-4330.55.
Lee
, J. G.
, and Santavicca
, D. A.
, 2003, “Experimental Diagnostics for the Study of Combustion Instabilities in Lean Premixed Combustors
,” J. Propul. Power
0748-4658, 19
(5
), pp. 735
–750
.56.
Mueller
, M. A.
, Kim
, T. J.
, Yetter
, R. A.
, and Dryer
, F. L.
, 1999, “Flow Reactor Studies and Kinetic Modeling of the H2∕O2 Reaction
,” Int. J. Chem. Kinet.
0538-8066, 31
, pp. 113
–125
.57.
Baulch
, D. L.
, Cobos
, C. J.
, Cox
, R. A.
, Frank
, P.
, Hayman
, G.
, Just
, Th.
, Kerr
, J. A.
, Murrells
, T.
, Pilling
, M. J.
, Troe
, J.
, Walker
, R. W.
, and Warnatz
, J.
, 1994, “Summary Table of Evaluated Kinetic Data for Combustion Modeling: Supplement 1
,” Combust. Flame
0010-2180, 98
, pp. 59
–79
.58.
Williams
, F. A.
et al., http://maeweb.ucsd.edu/combustion/cermech/http://maeweb.ucsd.edu/combustion/cermech/59.
Peschke
, W. T.
, and Spadaccini
, L. J.
, “Determination of Autoignition and Flame Speed Characteristics of Coal Gases Having Medium Heating Values
,” Final Report for AP-4291 Research Project 2357-1.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.