Repair of after-service gas turbine hot section superalloy components provides considerable saving in life-cycle cost of engines. Whereas a number of methods have been used in the past to repair these superalloy components, wide gap brazing technology has provided a practical alternative to repair difficult-to-weld alloys with substantial damages. In this paper, the historical development of wide gap repair technologies is reviewed first. Subsequently, the recent development in utilizing a vertically laminated structure to repair a large and deep gap (up to 16 mm) in one brazing cycle will be discussed. The microstructure resulted from this repair scheme will be evaluated and compared with conventional wide gap braze with slurry and that of the Liburdi powder metallurgy (LPM™) process. It is observed that in conventional wide gap brazing with premixed slurry, the presence of intermetallic compounds can be effectively reduced by reducing the ratio of braze alloy to gap filler, which, however, also contributes to the increased occurrence of macroscopic voids in the wide gap joint. The LPM™ method, on the other hand, can achieve a macroscopically void-free repair of gap (up to 6 mm) and minimize the formation of intermetallics. By using a vertically laminated repair scheme it is shown that the process is able to repair a deeper gap (up to 16 mm) with no macroscopic defects and reduced intermetallic compounds.

1.
Duval
,
D. S.
, and
Owczarski
,
W. A.
, 1967, “
Further Heat-Affected Zone Studies in Heat Resistant Nickel Alloys
,”
Weld. Res. Suppl.
,
Sept.
, pp.
423s
432s
.
2.
Liburdi
,
J.
, and
Lowden
,
P.
, 1985, “
Repair Technologies for Gas Turbine Components
,”
AGARD Conference Proceedings on Advanced Joining of Aerospace Metallic Materials
, Sept., Vol.
398
, pp.
22.1
22.12
.
3.
Heikinheimo
,
L. S. K.
,
Laukkanen
,
A.
, and
Veivo
,
J.
, 2005, “
Joint Characterization for Repair Brazing of Superalloys
,”
Weld. World
0043-2288,
49
(
5–6
), pp.
5
12
.
4.
Fritsche
,
B.
, and
Satir-Kolorz
,
A.
, 2000, “
Repair Brazing of Nickel-Based Turbine Blades
,”
Weld. World
0043-2288,
44
(
5
), pp.
10
14
.
5.
Gandy
,
D.
,
Frederick
,
G.
,
Stover
,
J.
, and
Viswanathan
,
R.
, 2003, “
Overview of Hot Section Component Repair Methods
,” www.my.epri.comwww.my.epri.com.
6.
Duval
,
D. S.
,
Owczarki
,
W. A.
, and
Paulonic
,
D. F.
, 1974, “
TLP Bonding—A New Method for Joining Heat Resistant Alloy
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
53
, pp.
203
214
.
7.
Duval
,
D. S.
, 1970, U.S. Patent No. 3,530,568.
8.
Duvall
,
D. S.
, and
Doyle
,
J. R.
, 1973, “
Repair of Turbine Blades and Vanes
,” ASME Paper No. 73-GT-44.
9.
Fritsche
,
F.
,
Satir-Kolorz
,
A.
, and
Baumann
,
R.
, 2000, “
Repair Brazing of Nickel-Based Turbine Blades
,”
Weld. World
0043-2288,
44
(
5
), pp.
10
14
.
10.
Ojo
,
O. A.
,
Richards
,
N. L.
, and
Chaturvedi
,
M. C.
, 2004, “
Effect of Gap Size and Process Parameters on Diffusion Brazing of Inconel 738
,”
Sci. Technol. Weld. Joining
1362-1718,
9
(
3
), pp.
209
220
.
11.
McComas
,
C. C.
, and
Stewart
,
D. C.
, 1987, “
Repair of Surface Defects in Superalloy Articles
,” U.S. Patent No. 4,705,203.
12.
Ferrigno
,
S. J.
,
Somerville
,
M.
, and
Young
,
R.
, 1989, “
Alloy Powder Mixture for Treating Alloys
,” U.S. Patent No. 4,830,934.
13.
Duval
,
D. S.
,
Owczarski
,
W. A.
,
Paulonic
,
D. F.
, and
Schaefer
,
R. P.
, 1977, “
Method for Repairing Surface Defects Using Metallic Filler Material
,” U.S. Patent No. 4,008,844.
14.
Huang
,
X.
,
Yandt
,
S.
,
Nagy
,
D.
, and
Yao
,
M.
, 2007, “
Effect of Ruthenium, Rhenium and Yttria Additions on the Microstructure of Wide Gap Brazing of IN738
,” ASME Paper No. GT2007-27129.
15.
Hopping
,
G. S.
, and
Berry
,
T. F.
, 1970, “
Activated Diffusion Bonding
,”
Weld. Res. Suppl.
,
Nov.
, pp.
505s
509s
.
16.
Demo
,
W. D.
, and
Ferrigno
,
S. J.
, 1992, “
Brazing Method Helps Repair Aircraft Gas-Turbine Nozzles
,”
Adv. Mater. Process.
,
141
(
3
), pp.
43
45
.
17.
McMurray
,
J. H.
, and
Miller
,
J. A.
, 1983, “
Braze Filler Metal Composition and Process
,” U.S. Patent No. 4,394,347.
18.
Lee
,
J. W.
,
McMurray
,
J. H.
, and
Miller
,
J. A.
, 1985, “
Development of a New Brazing Technique for Repair of Turbine Engine Components
,”
Weld. J. (Miami, FL)
,
64
, pp.
18
21
.
19.
Liburdi
,
J.
, and
Ellision
,
K. A.
, 1993, “
Novel Approach to the Repair of Vane Segment
,”
International Gas Turbine and Aero Engine Congress
,
Cincinnati, OH
, May 24–27, pp.
24
27
.
20.
Ellison
,
K. A.
,
Lowden
,
P.
, and
Liburdi
,
J.
, 1994, “
Powder Metallurgy Repair of Turbine Components
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
116
, pp.
237
242
.
21.
Liburdi
,
J.
,
Lowden
,
P.
, and
Ellison
,
K.
, 1992, “
Powder Metallurgy Repair Technique
,” U.S. Patent No. 5,156,321.
22.
Ellison
,
K. A.
,
Lowden
,
P.
, and
Liburdi
,
J.
, 1993, “
Repair Joints in Nickel-Based Superalloys With Improved Hot Corrosion Resistance
,” ASME Paper No. 93-GT-247.
23.
Young
,
W. R.
, 1978, “
Turbine Airfoil Repair
,”
Proceedings of the Conference on Materials Synergisms
,
Kaimesha Lake, NY
, Oct. 17–19, pp.
924
938
.
24.
Lorenz
,
A.
,
Sachs
,
E.
,
Allen
,
S.
,
Rafflenbeul
,
L.
, and
Kernan
,
B.
, 2004, “
Densification of a Powder-Metal Skeleton by Transient Liquid-Phase Infiltration
,”
Metall. Mater. Trans. A
1073-5623,
35
(
2
), pp.
631
640
.
25.
Lorenz
,
A.
,
Sachs
,
E.
, and
Allen
,
S.
, 2004, “
Freeze-off Limits in Transient Liquid-Phase Infiltration
,”
Metall. Mater. Trans. A
1073-5623,
35
(
2
), pp.
641
653
.
26.
Miglietti
,
W.
,
Kearney
,
J.
, and
Pabon
,
L.
, 2001, “
Liquid Phase Diffusion Bond Repair of Siemens V84.2, Row 2 Vanes and Alstom Tornado, Second Stage Stator Segments
,” ASME Paper No. 2001-GT-0510.
27.
Wustman
,
R. D.
,
Hampson
,
L.
,
Smith
,
J.
, and
Suneson
,
M.
, 1996, “
High Strength Diffusion Brazing Repairs for Gas Turbine Components
,” ASME Paper No. 96–GT-427.
28.
Bell
,
S.
, 1985, “
Repair and Rejuvenation Procedures for Aero Gas-Turbine Hot Section Components
,”
Mater. Sci. Technol.
,
1
, pp.
629
634
.
29.
Tandon
,
R.
, and
German
,
R. M.
, 1994, “
Supersolidus-Transient Liquid Phase Sintering Using Superalloy Powders
,”
Int. J. Powder Metall.
0020-7535,
30
(
4
), pp.
435
443
.
30.
Zhang
,
J.
,
Zhang
,
Z.
,
Sun
,
J.
, and
Liu
,
X.
, 2000, “
Effect of Gap Filler on Microstructure of Wide Gap Brazing Seam
,”
Mineral. J.
0544-2540,
41
(
8
), pp.
1073
1076
.
31.
Juergon
,
W.
, and
Malik
,
M. P.
, 1985, “
Wide Gap Brazing in Maintenance of Turbine Guide Vanes
,”
DVS-Ber.
0418-9639,
98
, pp.
78
82
.
32.
Yu
,
Y. H.
, and
Lai
,
M. O.
, 1995, “
Effect of Gap Filler and Brazing Temperature on Fracture and Fatigue of Wide Gap Brazed Joints
,”
J. Mater. Sci.
0022-2461,
30
, pp.
2101
2107
.
33.
Li
,
X.
,
Zhong
,
Q.
, and
Cai
,
C.
, 2003, “
Wide-Gap Brazing Between K403 and DZ4 Superalloys
,”
J. Aeronaut. Mater.
1005-5053,
23
(
4
), pp.
10
15
.
34.
Lim
,
L. C.
,
Lee
,
W. Y.
, and
Lai
,
M. O.
, 1995, “
Nickel Base Wide Gap Brazing With Preplacement Technique, Part I–Effect of Material and Process Parameters on Formation of Macrovoids
,”
Mater. Sci. Technol.
0267-0836,
11
, pp.
955
960
.
35.
Tung
,
S. K.
,
Lim
,
L. C.
, and
Lai
,
M. O.
, 1995, “
Microstructural Evolution and Control in BNi-4 Brazed Joints of Nickel 270
,”
Scr. Mater.
1359-6462,
33
(
8
), pp.
1253
1259
.
36.
Ohsasa
,
K.
,
Shinmura
,
T.
, and
Narita
,
T.
, 1999, “
Numerical Modeling of the Transient Liquid Phase Bonding Process of Ni Using Ni-B-Cr Ternary Filler Metal
,”
J. Phase Equilib.
1054-9714,
20
(
3
), pp.
199
206
.
37.
Shrivastava
,
P. K.
,
Tiwari
,
A. N.
, and
Gopinathan
,
V.
, 1989, “
Role of Boron in Fe- and Ni-Based Rapidly Solidified Microcrystalline Alloys
,”
Key Eng. Mater.
1013-9826,
38–39
, pp.
143
162
.
You do not currently have access to this content.