Studying heat transfer problems of supercritical water, the pressure dependency of thermophysical parameters (density, specific heat, viscosity, and thermal conductivity) and the work done by pressure are often neglected. Here we show that the variations of some physical parameters as functions of pressure have the same order of magnitude than their variations as functions of temperature in supercritical water. Therefore, pressure dependency of physical parameters should be taken into account in heat transfer calculations of supercritical water. It is also pointed out that the work done by pressure should not be neglected in supercritical water since the pressure work term has the same order of magnitude than the convective term near the pseudocritical temperature.

1.
Pioro
,
I. L.
,
Khartabil
,
H. F.
, and
Duffey
,
R. B.
, 2004, “
Heat Transfer to Supercritical Fluids Flowing in Channels-Empirical Correlations (survey)
,”
Nucl. Eng. Des.
0029-5493,
230
, pp.
69
91
.
2.
Koshizuka
,
S.
,
Takano
,
N.
, and
Oka
,
Y.
, 1995, “
Numerical Analysis of Deterioration Phenomena in Heat Transfer to Supercritical Water
,”
Int. J. Heat Mass Transfer
0017-9310,
38
, pp.
3077
3084
.
3.
Lee
,
S. H.
, and
Howell
,
J. R.
, 1998, “
Turbulent Developing Convective Heat Transfer in a Tube For Fluids Near the Critical Point
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
1205
1218
.
4.
Roelofs
,
F.
, 2004, “
CFD Analysis of Heat Transfer to Supercritical Water Flowing Vertically Upward in a Tube
,” NRG Report No. 21353∕04.60811∕P.
5.
Roelofs
,
F.
,
Lycklama a Nijeholt
,
J. A.
,
Komen
,
E. M. J.
,
Löwenberg
,
M.
, and
Starflinger
,
J.
, 2007, “
CFD Validation of a Supercritical Water Flow for SCWR Design Heat and Mass Fluxes
,”
International Conference on Advances in Nuclear Power Plants (ICAPP 2007)
,
Nice, France
, May 13–18.
6.
Seo
,
K. W.
,
Kim
,
M. H.
,
Anderson
,
M. H.
, and
Corradini
,
M. L.
, 2005, “
Heat Transfer in a Supercritical Fluid: Classification of Heat Transfer Regimes
,”
Nucl. Technol.
0029-5450,
154
, pp.
335
349
.
7.
Cheng
,
X.
,
Kuang
,
B.
, and
Yang
,
Y. H.
, 2006, “
Numerical Analysis Of Heat Transfer in Supercritical Water Cooled Flow Channels
,”
Nucl. Eng. Des.
0029-5493,
237
, pp.
240
252
.
8.
Cheng
,
X.
,
Laurien
,
E.
, and
Yang
,
Y. H.
, 2005, “
CFD Analysis of Heat Transfer in Supercritical Water in Different Flow Channels
,”
Proceedings of GLOBAL 2005
,
Tsukuba, Japan
, Oct 9–13, Paper No. 369.
9.
Bae
,
J. H.
,
Yoo
,
J. Y.
,
Choi
,
H.
, and
McEligot
,
D. M.
, 2005, “
Influence of Fluid-Property Variation on Turbulent Convective Heat Transfer in Vertical Annular Channel Flows
,”
11th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-11)
,
Avignon, France
, Oct. 2–6, Paper No. 018.
10.
Kiss
,
A.
, and
Aszódi
,
A.
, 2007, “
Preliminary Calculations of Coolant Flow in a SCWR Fuel Assembly With the Code ANSYS CFX 10.0
,”
Proceedings of ICAPP 2007 Conference, ICAPP 2007
,
Nice, France
, May 14–18, Paper No. 7494.
11.
Kiss
,
A.
, and
Aszódi
,
A.
, 2007, “
Refined Validation Calculations of Water Coolant Flow in a Supercritical Pressure Test Section Performed With the ANSYS CFX-11 Code
,”
NURETH
,
Pittsburgh, PA
, Sept. 30—Oct. 4.
12.
Amiroudine
,
S.
,
Bountoux
,
P.
,
Larroud
,
P.
,
Gilly
,
B.
, and
Zappoli
,
B.
, 2001, “
Direct Numerical Simulation of Instabilities in a Two-Dimensional Near-Critical Fluid Layer Heated From Below
,”
J. Fluid Mech.
0022-1120,
442
, pp.
119
140
.
13.
Furukawa
,
A.
,
Meyer
,
H.
, and
Onuki
,
A.
, 2005, “
Numerical Simulation Studies of the Convective Instability Onset in a Supercritical Fluid
,”
Phys. Rev. E
1063-651X,
71
, p.
067301
.
14.
Házi
,
G.
, and
Márkus
,
A.
, 2008, “
Modelling Heat Transfer in Supercritical Fluid Using the Lattice Boltzmann Method
,”
Phys. Rev. E
1063-651X,
77
, p.
026305
.
15.
Nakano
,
A.
, and
Shiraishi
,
M.
, 2004, “
Numerical Simulation for the Piston Effect and Thermal Diffusion Observed in Supercritical Nitrogen
,”
Cryogenics
0011-2275,
44
, pp.
867
873
.
16.
Onuki
,
A.
,
Hao
,
H.
, and
Ferrel
,
R.
, 1990, “
Fast Adibatic Equilibration in a Single-Component Fluid Near the Liquid-Vapor Critical Point
,”
Phys. Rev. A
1050-2947,
41
, pp.
2256
2259
.
17.
Straub
,
J.
,
Eicher
,
L.
, and
Haupt
,
A.
, 1995, “
Dynamic Temperature Propagation in a Pure Fluid Near Its Critical Point Observed Under Microgravity During the German Spacelab Mission D-2
,”
Phys. Rev. E
1063-651X,
51
, pp.
5556
5563
.
18.
Zappoli
,
B.
,
Bailly
,
D.
,
Garrabos
,
Y.
,
Neindre
,
B. L.
,
Guenoun
,
P.
, and
Beysens
,
D.
, 1990, “
Anomalous Heat Transport by the Piston-Effect in Supercritical Fluids Under Zero Gravity
,”
Phys. Rev. A
1050-2947,
41
, pp.
2264
2267
.
19.
Zappoli
,
B.
, 1992, “
The Response of a Nearly Supercritical Pure Fluid to a Thermal Disturbance
,”
Phys. Fluids A
0899-8213,
4
, pp.
1040
1048
.
20.
Zhong
,
F.
, and
Meyer
,
H.
, 1993, “
Density Equilibration Near the Liquid-Vapor Critical Point of a Pure Fluid: Single Phase T>Tc
,”
Phys. Rev. E
1063-651X,
51
, pp.
3223
3241
.
21.
Jackson
,
J. D.
, and
Hall
,
W. B.
, 1979, “
Forced Convection Heat Transfer to Fluids at Supercritical Pressure
,”
Turbulent Forces Convection in Channels and Bundles
,
S.
Kakac
and
D. B.
Spalding
, eds.,
Hemisphere
,
Washington, DC
.
22.
Házi
,
G.
, 2006, “
Heat Transfer in Supercritical Fluids
,”
High Perference Light Water Reactor Phase 2 (HPLWR), Kick-Off Meeting
,
Budapest
, Sept. 6.
23.
Herwig
,
H.
, and
Schafer
,
P.
, 1992, “
Influence of Variable Properties on the Stability of Two-Dimensional Boundary Layers
,”
J. Fluid Mech.
0022-1120,
243
, pp.
1
14
.
24.
Schlichting
,
H.
, 1979,
Boundary-Layer Theory
,
McGraw Hill
,
New York
.
25.
Lin
,
C. R.
, and
Chen
,
C. K.
, 1994, “
Effect of Temperature Dependent Viscosity on the Flow and Heat Transfer Over an Accelerating Surface
,”
J. Phys. D: Appl. Phys.
0022-3727,
27
, pp.
29
37
.
26.
Pinarbasi
,
A.
,
Ozalp
,
C.
, and
Duman
,
S.
, 2005, “
Influence of Variable Thermal Conductivity and Viscosity for Nonisothermal Fluid Flow
,”
Phys. Fluids
1070-6631,
17
, p.
038109
.
27.
Herwig
,
H.
, 1985, “
The Effect of Variable Properties on Momentum and Heat Transfer in a Tube With Constant Heat Flux Across the wall
,”
Int. J. Heat Mass Transfer
0017-9310,
28
, pp.
423
431
.
You do not currently have access to this content.